Síntesis de micro y nanopartículas a partir de efluentes del decapado de la industria de galvanizado por inmersión en caliente
Publicado 2023-02-28
Palabras clave
- galvanizado en caliente, decapado, nanopartículas, síntesis química, hierro, zinc.
Cómo citar
Derechos de autor 2023 Alejandro Ramírez Marín, Juan Diego Torres de la Ossa, Manuel Felipe Torres Perdomo, María José Vásquez Canabal, Luz Marina OCAMPO CARMONA
Esta obra está bajo una licencia internacional Creative Commons Atribución 4.0.
Resumen
El proceso de galvanizado en caliente es una de las técnicas de protección contra la corrosión del acero más utilizadas y consiste en la inmersión del acero en un baño de zinc fundido. Este proceso consta de varias etapas y cada una de ellas produce residuos sólidos o efluentes con contenido metálico, que deben ser tratados antes de ser dispuestos en los vertedores y alcantarillado público. Estos residuos son alrededor de 1 000 000 t/año a nivel mundial. La eliminación segura de éstos es de gran importancia para la protección del medio ambiente. La etapa más crítica de este proceso es el decapado, que genera efluentes muy complejos de tratar debido al carácter ácido y contenido metálico, pero son de interés para la obtención de materiales de valor agregado. En este artículo se obtienen micro y nanopartículas de hierro y zinc a partir de efluentes de decapado de la industria del galvanizado en caliente, utilizando cuatro rutas diferentes de síntesis química (co-precipitación y sol-gel), obteniéndose partículas con diferentes tamaños, morfologías y estructuras cristalinas.
Descargas
Referencias
- Culcasi A, Gueccia R, Randazzo S, Cipollina A, Micale G. Design of a novel membrane-integrated waste acid recovery process from pickling solution. J. Clean. Prod. 2019;236:117623. doi.org/10.1016/j.jclepro.2019.117623
- Magalhães JM, Silva JE, Castro FP, Labrincha JA. Physical and chemical characterisation of metal finishing industrial wastes. J. Environ. Manage. 2005;75(2):157–166. doi.org/10.1016/j.jenvman.2004.09.011
- Pérez-Villarejo L, S. Martínez-Martínez S, Carrasco-Hurtado B, Eliche-Quesada D, Ureña-Nieto C, Sánchez-Soto PJ. Valorization and inertization of galvanic sludge waste in clay bricks. Appl. Clay Sci. 2015;105–106:89–99. doi.org/10.1016/j.clay.2014.12.022
- Schmidt B, Wolters R, Kaplin J, Schneiker T, Lobo-Recio MA, López F, et al. Rinse water regeneration in stainless steel pickling. Desalination. 2007;211(1–3):64–71. doi.org/10.1016/j.desal.2006.03.591
- Silva AC, Mello-Castellano S, Guitian F, Montero I, Esteban-Cubillo A, Sobrados I, et al. Incorporation of galvanic waste (Cr, Ni, Cu, Zn, Pb) in a soda-lime-borosilicate glass. J. Am. Ceram. Soc. 2008;91(4):1300–1305. doi.org/10.1111/j.1551-2916.2008.02311.x
- Scheer G, Huckshold M. Design and Manufacturing according to Hot-Dip Galvanizing Requirements. En: Handbook of Hot-Dip Galvanization. Maaß P, Peißker P. Germany: WILEY-VCH; 2011. p. 239-289. doi.org/10.1002/9783527636884.ch7
- Hernández JD. Detection of the critical points of the hot-dip galvanizing process: a focus on sustainability and sustainable development (tesis de maestria). Medellín, Colombia: Universidad Nacional de Colombia; 2018. doi.org/10.13140/RG.2.2.19244.56960
- Sinha MK, Pramanik S, Sahu SK, Prasad LB, Jha MK, Pandey BD. Development of an efficient process for the recovery of zinc and iron as value added products from the waste chloride solution. Sep. Purif. Technol. 2016;167:37–44. doi.org/10.1016/j.seppur.2016.04.049
- Bao S, Tang L, Li K, Ning P, Peng J, Guo H, et al. Highly selective removal of Zn(II) ion from hot-dip galvanizing pickling waste with amino-functionalized Fe3O4@SiO2 magnetic nano-adsorbent. J. Colloid Interface Sci. 2016;462:235–242. doi.org/10.1016/j.jcis.2015.10.011
- Guo B, Liu B, Yang J, Zhang S. The mechanisms of heavy metal immobilization by cementitious material treatments and thermal treatments: A review. J. Environ. Manage. 2017;193:410–422. doi.org/10.1016/j.jenvman.2017.02.026
- Zhang M, Chen C, Mao L, Wu Q. Use of electroplating sludge in production of fired clay bricks: Characterization and environmental risk evaluation. Constr. Build. Mater. 2018;159:27–36. doi.org/10.1016/j.conbuildmat.2017.10.130
- Lian J, Ouyang Q, Tsang PE, Fang Z. Fentonlike catalytic degradation of tetracycline by magnetic palygorskite nanoparticles prepared from steel pickling waste liquor,” Appl. Clay Sci. 2019;182:105273 doi.org/10.1016/j.clay.2019.105273
- Li Y, Chen D, Fan S, Yang T. Enhanced visible light assisted Fenton-like degradation of dye via metal-doped zinc ferrite nanosphere prepared from metal-rich industrial wastewater. J. Taiwan Inst. Chem. Eng. 2019;96:185–192. doi.org/10.1016/j.jtice.2018.11.006
- Zueva SB, Ferella F, Innocenzi V, De Michelis I, Corradini V, Ippolito NM, et al. Recovery of zinc from treatment of spent acid solutions from the pickling stage of galvanizing plants. Sustain. 2021;13(1):1–8. doi.org/10.3390/su13010407
- Akbari A, Amini M, Tarassoli A, Eftekhari-Sis B, Ghasemian N, Jabbari E. Transition metal oxide nanoparticles as efficient catalysts in oxidation reactions. Nano-Structures & Nano-Objects. 2018;14:19–48. doi.org/10.1016/j.nanoso.2018.01.006
- Roy SD, Das KC, Dhar SS. Conventional to green synthesis of magnetic iron oxide nanoparticles; its application as catalyst, photocatalyst and toxicity: A short review. Inorg. Chem. Commun. 2021;134:109050. doi.org/10.1016/j.inoche.2021.109050
- Doolette CL, Read TL, Howell NR, Cresswell T, Lombi E. Zinc from foliar-applied nanoparticle fertiliser is translocated to wheat grain: A 65Zn radiolabelled translocation study comparing conventional and novel foliar fertilisers. Sci. Total Environ. 2020;749:142369. doi.org/10.1016/j.scitotenv.2020.142369
- Andhare DD, Jadhav SA, Khedkar MV, Somvanshi SB, More SD, Jadhav KM. Structural and Chemical Properties of ZnFe2O4 Nanoparticles Synthesised by Chemical Co-Precipitation Technique. J. Phys. Conf. Ser. 2020;1644(1):012014. doi.org/10.1088/1742-6596/1644/1/012014
- Kang F, Wu M, Xiao B, Chen R, Wei Y, Liu H, et al. Facile synthesis of schwertmannite@akaganeite core/shell nanostructure from pickling waste liquor: Formation mechanism and potential application. J. Clean. Prod. 2020;260:120961. doi.org/10.1016/j.jclepro.2020.120961
- Picasso G, Vega J, Uzuriaga R, Ruiz GP. Synthesis of nanoparticles of magnetite by sol-gel and precipitation methods: study of chemical composition and structure. Rev Soc Quim Perú. 2012;78(3):170–182.
- Vinosha PA, Mely LA, Jeronsia JE, Krishnan S, Das SJ. Synthesis and properties of spinel ZnFe2O4 nanoparticles by facile co-precipitation route. Optik (Stuttg). 2017;134:99–108. doi.org/10.1016/j.ijleo.2017.01.018
- Verma A, Kore R, Corbin DR, Shiflett MB. Metal Recovery Using Oxalate Chemistry: A Technical Review. Ind. Eng. Chem. Res. 2019;58(34):15381–15393. doi.org/10.1021/acs.iecr.9b02598
- Mehrizadeh H, Niaei A, Tseng HH, Salari D, Khataee A. Synthesis of ZnFe2O4 nanoparticles for photocatalytic removal of toluene from gas phase in the annular reactor. J. Photochem. Photobiol. A Chem. 2017;332:188–195. doi.org/10.1016/j.jphotochem.2016.08.028
- Sonu, Sharma S, Dutta V, Raizada P, Hosseini-Bandegharaei A, Thakur V, et al. An overview of heterojunctioned ZnFe2O4 photocatalyst for enhanced oxidative water purification. J. Environ. Chem. Eng. 2021;9(5):105812. doi.org/10.1016/j.jece.2021.105812
- Abrahams SC, Bernstein JL. Remeasurement of the structure of hexagonal ZnO. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1969;25(7):1233–1236. doi.org/10.1107/s0567740869003876
- Verwey EJW, Heilmann EL. Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. J. Chem. Phys. 1947;15(4):174–180. doi.org/10.1063/1.1746464