Vol. 28 Núm. 2 (2015): Revista ION
Artículos

Impacto del CO2 sobre la densidad celular en seis cepas de microalgas marinas

Alberto I. Oscanoa Huaynate
Laboratorio de Biotecnología Acuática, Área Funcional de Investigaciones en Acuicultura, Dirección General de Investigaciones en Acuicultura, Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle S/N Chucuito, Callao, Perú.
Biografía
Gheraldine A. Ynga Huamán
Laboratorio de Biotecnología Acuática, Área Funcional de Investigaciones en Acuicultura, Dirección General de Investigaciones en Acuicultura, Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle S/N Chucuito, Callao, Perú.
Biografía
Iliana L. Chang Ávila
Laboratorio de Biotecnología Acuática, Área Funcional de Investigaciones en Acuicultura, Dirección General de Investigaciones en Acuicultura, Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle S/N Chucuito, Callao, Perú.
Biografía
Carla P. Aguilar Samanamud
Laboratorio de Biotecnología Acuática, Área Funcional de Investigaciones en Acuicultura, Dirección General de Investigaciones en Acuicultura, Instituto del Mar del Perú (IMARPE), Esquina Gamarra y General Valle S/N Chucuito, Callao, Perú.
Biografía

Publicado 2015-12-30

Palabras clave

  • Microalgas,
  • Densidad celular,
  • CO2,
  • Cultivo Masivo.

Cómo citar

Oscanoa Huaynate, A. I., Ynga Huamán, G. A., Chang Ávila, I. L., & Aguilar Samanamud, C. P. (2015). Impacto del CO2 sobre la densidad celular en seis cepas de microalgas marinas. Revista ION, 28(2). https://doi.org/10.18273/revion.v28n2-2015002

Resumen

Debido a la gran facilidad con que las microalgas pueden capturar el CO2 del medio ambiente, resulta interesante evaluar la cantidad y tiempo de ingreso de éste a los cultivos masivos, con la finalidad de aumentar la densidad celular. El objetivo del presente estudio fue evaluar los tiempos de inyección del mencionado gas, durante la producción de biomasa que conlleve a una mayor densidad celular, evaluando además, la variación del pH sin alterar la calidad del cultivo. A partir de seis cepas obtenidas del Banco de Germoplasma del Instituto del Mar del Perú, se realizaron cultivos tipo batch de 300L en invernadero, el tiempo de cultivo de la fase exponencial donde se realizaron las pruebas fue de tres días. Los datos se procesaron mediante el análisis del parámetro pendiente de la regresión lineal. Los resultados mostraron que la densidad celular es inversamente proporcional al tiempo de inyección de CO2 al cultivo. La mayor densidad celular, en las diferentes cepas, se obtuvo a los 5min, excepto para las cepas Chaetoceros gracilisy Nannochloris maculata, las cuales obtienen la mayor densidad a los 10 y 15min, respectivamente. La variación de pH tendió hacia la acidez, en un rango de 8 a 4, sin alterar la densidad celular, por el contrario, los cultivos permanecieron libres de contaminantes. En conclusión, los resultados permiten establecer tiempos adecuados de inyección del CO2, los cuales fortalecen la fase de crecimiento exponencial aumentando la densidad poblacional en un 30% sobre lo establecido en esta fase.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Ferreira L, Rodrigues M, Converti A, Sato S, Carvalho J. Arthrospira platensis (Spirulina) cultivation in tubular photobioreactor: Use of no-cost CO2 from ethanol fermentation. Appl. Energy. 2012;92:379–85.

[2] Wackett L. Microbial-based fuels: science and technology. Microb Biotechnol. 2008;1:211–25.

[3] Skjanes K, Lindblad P, Muller J. BiOCO2 - a multidisciplinary, biological approach using solar energy to capture CO2 while producing H2 and high value products. Biomol Eng. 2007;24:405–13.

[4] Pulz O, Gross W. Valuable products from biotechnology of microalgae. Appl Microbiol Biotechnol. 2004;65:635–48.

[5] Um B, Kim Y. Review: A change for Korea to advance algal-biodiesel technology. J. Ind. Eng. Chem. 2009;15(1):1-7.

[6] Šoštarie M, Golob J, Bricelj M, Klinar D, Pivec A. Studies on the growth of Chlorella vulgarisin culture media with different carbon sources. Chem. Biochem. Eng. 2009;23(4):471-7.

[7] Costa J, Linde G, Atala D, Mibielli G. Modelling of growth conditions for cyanobacterium Spirulina platensis in microcosms. World J. Microbiol Biotechnol. 2000;16(1):15–8.

[8] Crutzen P, Mosier A, Smith K, Winiwarter W. N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels. Atmos. Chem. Phys. 2008;8:389–95.

[9] De Morais M, Costa J. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three-stage serial tubular photobioreactor. J. Biotechnol, 2007;129:439–45.

[10] Jeong L, Gillis J, Hwang J. Carbon dioxide mitigation by microalgal photosynthesis. Bull. Korean. Chem. Soc. 2003;24(12):1763-6.

[11] Hughes E, Benemann J. Biological fossil CO2 mitigation. Energy. Convers. Manage. 1997;38:467-73.

[12] Oswald W, Golueke C. Biological transformation of solar energy. Adv. Appl. Microbiol. 1960;11:223-262.

[13] Benemann JR, Weissman JC, Koopman BL, Oswald WJ. Energy production by microbial photosynthesis. Nature. 1977;268(5615):19–23.

[14] Sheehan J, Dunahay T, Benemann J, Roessler P. A look back at the US Department of Energy’s aquatic species program—Biodiesel from algae (NREL/TP-580-24190). Golden, CO: National Renewable Energy Laboratory (NREL), US DOE;1998.

[15] Benemann J. Biofixation of CO2 and greenhouse gas abatement with algae – technology roadmap. Report No. 7010000926. Morgantown, United States: Prepared for the U.S. Department of Energy National Energy Technology Laboratory; 2003.

[16] National Energy Technology Laboratory. Recovery and sequestration of CO2 from stationary combustion systems by photosynthesis of microalgae. Pittsburgh, Estados Unidos: Nakamura T; 2004.

[17] Bayless, D, Kremer, G, Vis-Chiasson, M, Stuart, B, Shi, L. Photosynthetic CO2 Mitigation Using a Novel Membrane-Based Photobioreactor. J. Environ. Eng. Manag. 2006;16(4):209-15.

[18] Usui N, Ikenouchi M. The biological CO2fixation and utilization project by RITE (1) – highly effective photobioreactor systems. Energy Conserv. Mgmt. 1996;38:S487-92.

[19] Ikuta Y, Weissman J. Carbon dioxide utilization-microalgae. Technology. 2000;75:137-45.

[20] Nakajima Y, Ueda R. The effect of reducing light-harvesting pigment on marine microalgal productivity. J. App. Phycol. 2000;12:285–90.

[21] Matsumoto H, Hamasaki A, Sioji N, Ikuta Y. Influence of CO2, SO2, and NO in Flue Gas on Microalgae Productivity. J. Chem. Eng. 1997;30(4):620–24.

[22] Papazi A, Makridis P, Divanach P, Kotzabasis K. Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO2 concentrations induce an intense biomass production. Physiol. Plant. 2008;132(3):338-49.

[23] Hodaifa G, Martinez M, Sanchez S. Daily doses of light in relation to the growth of Scenedesmus obliquus in diluted threephase olive mill wastewater. J. Chem Technol Biotechnol. 2009;84:1550–8.

[24] Pulz O. Photobioreactors: production systems for phototrophic microorganisms. Appl Microbiol Biotechnol. 2001;57(3):287–93.

[25] Fadhil S. Microalgae tolerance to high concentrations of carbon dioxide: A review. J. Environment. Protection. 2011;2:648-654.

[26] Chiu S, Kao C, Chen C, Kuan T, Ong S, Lin C. Reduction of CO2 by a high-density culture of Chlorella sp. In a semicontinuous photobioreactor. Bioresour. Technol. 2008;99(9):3389–96.

[27] Babcock R, Malda J, Radway J. Hydrodynamics and mass transfer in a tubular air-lift photobioreactor. J. Appl. Phycol. 2002;14:169–14.

[28] Morita M, Watanabe Y, Okawa T, Saiki H. Photosynthetic productivity of conical helical tubular photobioreactors incorporating Chlorella sp. under various culture medium flow conditions. Biotechnol. Bioeng. 2001;74(2):136–44.

[29] Merchuk J, Gluz M, Mukmenev I. Comparison of photobioreactors for cultivation of the red microalga Porphyridium sp. J. Chem. Technol. Biotechnol. 2000;75(12):1119–26.

[30] Lee Y, Pirt S. CO2 absorption rate in an algal culture: effect of pH. J. Chem. Tech. Biotechnol.1984;34(1):28–32.

[31] Keffer J, Kleinheinz G. Use of Chlorella vulgaris for CO2 mitigation in a photobioreactor. J. Ind. Microbiol. Biotechnol. 2002;29:275–80.

[32] Iwasaki I, Hu Q, Kurano N, Miyachi S. Effect of Extremely High-CO2 Stress on Energy Distribution Between Photosystem I and Photosystem II in a High-CO2 Tolerant Green Alga, Chlorococcum littorale and the Intolerant Green Alga Stichococcus bacillaris. J. Photochem. Photobiol. B. 1998;44(3):184–90.

[33] Murakami M, Ikenouchi M. The biological CO2fixation and utilization by RITE (2) Screening and breeding of microalgae with high capability in fixing CO2. Energy Conv. Manag. 1997;38:S493-7.

[34] Vinod K. Feels algae are not yet ready for primetime?. Oilgae. Disponible en: http://www.oilgae.com/blog/2008/10/vinod-khosla-feels-algae-arenot-yet.html. Acceso el 20 de octubre del 2014.

[35] Sierra E, Acien F, Fernadez J, Garcia J, Gonzalez C, Molina E. Characterization of a flat plate protobioreactor for the production of microlagae. Chem. Eng. J. 2008;138:136-147.

[36] Zhang K, Kurano N, Miyachi S. Optimized aeration by carbon dioxide gas for microalgal production and mass transfer characterization in a vertical flat-plate photobioreactor. Bioproc. Biosyst. Eng. 2002;25:97–101.

[37] Jeong Y, Ishida K, Ito Y, Okada S, Murakami M. Bacillamide, a novel algicide from the marine bacterium, Bacillus sp. SY-1 against the harmful dinoflagellate, Cochlodinium polykrikoides. Tetrahedron Lett. 2001;4:8005–7.

[38] Douskova I, Doucha J, Livansky K, Machat J, Novak P, Umysova D, Zachleder V, Vitova M. Simultaneous flue gas bioremediation and reduction of microalgal biomass production costs. Appl. Microbiol. Biotechnol. 2009;82:179-85.

[39] Benemann J, Tillet D, Weissman J. Microalgae biotechnology. Trends in Biotechnology. 1987;5:47-53.

[40] Coleman J. The molecular and biochemical analyses of CO2-concentrating mechanisms in cyanobacteria and microalgae. Plant Cell Environ. 1991;14:861–7.

[41] Miller A, Espie G, Canvin D. Physiological-aspects of CO2 and HCO3 − transport by cyanobacteria — a review. Can J Bot Rev Can Bot. 1990;68:1291–302.

[42] Badger M, Price G. Carbonic-anhydrase activity associated with the Cyanobacterium synechococcus PCC7942. Plant Physiol. 1989;89:51–60.

[43] Roncarati A, Meluzzi A, Acciarri S, Tallarico N, Melotti P. Fatty Acid of Different Microalgae Strains (Nannochloropsis sp., Nannochloropsis oculata (Droop) Hibberd, Nannochloropsis atomus Butcher and Isochrysis sp.) According to the culture Phase and the Carbon Dioxide Concentration. J. World Aquacult. Soc. 2004;35(3):401-11.

[44] Brennan L, Owende P. Biofuels from microalgae – A review of technologies for production, processing and extractions of biofuels and co-products. Renew. Sustainable Energy Rev. 2010;14:557-577.

[45] Mann G, Schlegel M, Schumann R, Sakalauskas A. Biogas-conditioning with microalgae. Agron. Res. 2009;7(1):33-8.

[46] Park J, Craggs R, Shilton A. Recycling algae to improve species control and harvest efficiency from a high rate algal pond. Water Res. 2011;45:6637-49.

[47] Martínez L. Eliminación de CO2 con microalgas autóctonas (Tesis Doctoral) León, España: Instituto de Recursos Naturales Universidad de León; 2008.

[48] Mendoza H, De la Jara A, Portillo E. Planta piloto de cultivo de microalgas: Desarrollo potencial de nuevas actividades económicas asociadas a la biotecnología en Canarias. España: Gráficas Tenerife S.A. 2011.

[49] Nielsen M. Photosynthetic characteristics of the Coccolithophorid Emiliania huxleyi(Prymnesiophyceae) exposed to elevated concentrations of dissolved inorganic carbon. J. Phycol. 1995;31:715–9.

[50] Myers J. Growth characteristics of algae in relation to the problems of mass culture. In: Algal culture from laboratory to pilot plant, J.S. Burlew (Ed.), Carnegie Institution of Washington, Washington, DC.1953.

[51] Sung K, Lee J, Shin C, Park S, Choi M. CO2 fixation by Chlorella sp. KR-1 and its cultural characteristics. Biores. Biotechnol. 1999;68:269-73.

[52] Kurano N, Ikemoto H, Miyashita H, Hasegawa T, Hata H, Miyachi S. Fixation and Utilization of Carbon Dioxide by Microalgal Photosynthesis. Energy Conversion and Management. 1995;36(6–9):689–92.

[53] Hanagata N, Takeuchi T, Fukuju Y. Tolerance of Microalgae to High CO2 and High Temperature. Phyto-chemistry. 1992;31(10):3345-8.

[54] Maeda K, Owada M, Kimura N, Omata L Ka-rube I. CO2 Fixation from the Flue Gas on Coalfired Thermal Power Plant by Microalgae. Energ. Convers. Manage. 1995;36(6-9):717-20.

[55] Hirata S, Taya M, Tone S. Characterization of Chlorella Cell Cultures in Batch and Continuos Operations under a Photoautotrophic Condition. J. Chem. Eng. of Japan. 1996a;29(6):953-9.

[56] Hirata S, Hayashitani M, Taya M, Tone S. Carbon Dioxide Fixation in Batch Culture of Chlorella sp. Using a Photobioreactior with a Sunlight-Collection Device. J. Mar. Biotechnol. 1996b;81(5)470-2.

[57] Kodama M, Ikemoto H, Miyachi S. A new species of highly CO2-tolreant fast-growing marine microalga suitable for high-density culture. J Mar Biotechnol. 1993;1:21-5.

[58] Seckbach J, Gross H, Nathan M. Growth and photosynthesis of Cyanidium caldariumcultured under pure CO2. Israel J. of Bot. 1971;20:84-90.

[59] Graham L, Wilcox L. Algae. Estados Unidos: Prentice-Hall, Inc; 2000.

[60] Gomez A, Jaimes N. Estudio de la incidencia del suministro de CO2 en el crecimiento de las microalgas en un fotobiorreactor a escala laboratorio (Proyecto de pregrado) Bucaramanga, Colombia: Universidad Industrial de Santander; 2010.

[61] Nakano Y, Miyatake K, Okuno H, Hamazaki K, Takenaka S, Honami N, Kiyota M, Aiga I, Kondo J. Growth of Photosynthetic Algae Euglena in High CO2 Conditions and Its Photosynthetic Characteristics. Acta Horticulturae. 1996;440(9):49-54.

[62] Renaud S, Zhou H, Parry D, Loung-Van T, Woo K. Effect of temperature on the growth, total lipid content and fatty acid composition of recently isolated tropical microalgae Isochrysis sp. Nitzschia closterium, Nitzschia paleacea, and commercial species Isochrysis sp. J. Appl. Phycol. 1995;7(6):595-602.

[63] Raghavan G, Haridevi C, Gopinathan C. Growth and proximate composition of the Chaetoceros calcitrans f. pumilus under different temperature, salinity and carbon dioxide levels. Aquacult. Res. 2008;39(10):1053-8.

[64] Converti A, Casazza A, Ortiz E, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgarisfor biodiesel production. Chemical Eng. and Process. 2009;48:1146-51.

[65] Chang E, Yang S. Microalgae for biofixation of carbon dioxide. Bot. Bull. Acad. Sin. 2003;44:43-52.

[66] Watanabe Y, Ohmura N, Saiki H. Isolation and determination of cultural- characteristics of microalgae which functions under CO2 enriched atmosphere. Energ. Convers. Manage. 1992;33:545-52.

[67] Yue L, Chen W. Isolation and determination of cultural characteristics of a new highly CO2 tolerant fresh water microalgae. Energ Convers Manage. 2005;46:1868-76.

[68] Li Y, Horsman M, Wu N, Lan C, Dubois-Calero N.Li Y, Horsman M, Wu N, Lan C, Dubois-Calero N. Biofuels from microalgae. Biotechnol Prog. 2008;24(4):815-20. ASAP Article, DOI 10.1021/bp070371kS8756-7938(07)00371-2; 2008.

[69] Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007;25:294–306.