Vol. 28 No. 2 (2015): Revista ION
Articles

Preliminary development of a methodology for supply CO2 to Botryococcus braunii crops for biofuel production

Nestor Andres Jaimes Villarreal
Universidad Industrial de Santander (UIS)
Bio
Viatcheslav Kafarov
Universidad Industrial de Santander (UIS)
Bio

Published 2015-12-30

Keywords

  • Microalgae,
  • Botryococcus Braunii,
  • CO2,
  • Photobioreacto,
  • Lipids,
  • Hydrocarbons.
  • ...More
    Less

How to Cite

Jaimes Villarreal, N. A., & Kafarov, V. (2015). Preliminary development of a methodology for supply CO2 to Botryococcus braunii crops for biofuel production. Revista ION, 28(2). https://doi.org/10.18273/revion.v28n2-2015003

Abstract

Several studies about the cultivation of microalgae in laboratory and pilot scale have recorded the potential of these microorganisms for the production of raw material in the fabrication of biofuels. The provision of a carbon source for the mass cultivation of microalgae is one of the main constraints in the production process; these photosynthetically fixed inorganic carbon (CO2) and synthesized metabolites for biofuel production. In the present study the influence of various parameters of CO2 supply over Botryococcus braunii crops in laboratory scale photobioreactors was evaluated. Central composite experimental designs were proposed to correlate the parameters and determine their effect on the dilution of CO2 and production of metabolites (biomass, lipids and hydrocarbons). Regarding design parameters of the photobioreactor, heights > 36cm, diameter < 7cm and small bubble sizes help increase CO2 dilution up to 180%. It was found that high concentrations of CO2 (> 0.06v/vm) continuously supplied are ideal for cell growth. Moreover, medium concentrations of CO2 (0.04 – 0.06v/vm) are ideal for the production of lipids and low concentrations of CO2 (< 0.02v/vm) is ideal for the production of hydrocarbons. The potential of the Colombian B. braunii strain for biodiesel production was validated thanks to its high lipid synthesis.

Downloads

Download data is not yet available.

References

[1] Garcia Alba L, Torri C, Samori C, Brilman DW. Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept. Energ. Fuels. 2012;26(1):642-57.

[2] Energy Information Administration. Annual Energy Review. United States: Department of Energy; 2008.

[3] Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 2008;79(5):707-18.

[4] Li Y, Wang B, Wu N, Lan C. Effects of nitrogen sources on cell growth and lipid production of Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008;8:629-36.

[5] Csogör Z, Herrenbauer M, Schmidt K, Posten C. Light distribution in a novel photobioreactor – modeling for optimization. J. Appl. Phycol. 2001;13:325-33.

[6] Lee C. Calculation of Light Penetration Depth in Photobioreactors. Biotechnol. Bioprocess Eng.1999;4(1):78-81.

[7] Kondili E, Kaldellis J. Biofuel implementation in East Europe: current status and future prospects. Renew. Sust. Energ. 2007;11:2137- 51.

[8] De Morais MG, Vieira Costa J. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three stage serial tubular photobioreactor. J. Biotechnol. 2007;129:439-45.

[9] Costa R, Medri W, Perdomo C. High-rate pond for treatment of piggery wastes. Water Sci. Technol. 2000;42(10):357-62.

[10]Bilanovic D, Andargatchew A, Kroeger T, Shelef G. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – Response surface methodology analysis. Energ. Convers. Manage. 2009;50(2):262-7.

[11]Falkowski PG, Raven JA. Aquatic photosynthesis. London: Princeton University Press; 1997.

[12]Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007;25(3):294-306.

[13]Beneman J, Hughes E. Biological fossil CO2 mitigation. Energ. Convers. Manage. 1997;38(19):467-73.

[14] Tapie P, Bernard A. Microalgae production technical and economic evaluations. Biotechnol Bioeng. 1988;32(7):873-85.

[15] Abalde A, Cid A, Fidalgo P, Torres E, Herrero C. Microalgas: Cultivos y Aplicaciones. Universidad Da Coruña; 1995. Monografía No.26, p. 210.

[16] Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. BioMetals. 2002;15(4):377-90.

[17] Cheng L, Zhang L, Chen H. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep. Purif. Technol. 2006;50(3):324-9.

[18] Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. United States: Blackwell Science Ltd; 2004.

[19] Li Y, Horsman M, Wu N, Lan C, Dubois-Calero N. Biofuels from microalgae. Biotechnol. Progr. 2008;24(4):815-20.

[20] Raja R, Hemaiswarya S, Kumar N, Sridhar S, Rengasamy R. A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 2008;34(2):77-88.

[21] Weiss TL, Johnston JS, Fujisawa K, Okada S, Devarenne TP. Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii. J. Appl. Phycol. 2010;23(5):833-9.

[22] Banerjee A, Sharma R, Chisti Y, Banerjee U. Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals. Crit. Rev. Biotechnol. 2002;22(3):245-79.

[23] Wake L, Hillen L. Study of a ‘bloom’ of the oil-rich alga Botryococcus braunii in the Darwin River Reservoir. Biotechnol. Bioeng. 1980;22(8):1637-56.

[24] Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O. Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnol. Bioeng. 1985;27(3):286-95.

[25] Largeau C, Casadevall E, Berkaloff C, Dhamliencourt P. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochem. 1980;19:1043-51.

[26] Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 2005;66:486-96.

[27] Ranga Rao A, Sarada R, Ravishankar G. Influence of CO2 on Growth and Hydrocarbon Production in Botryococcus braunii. J. Microbiol. Biotechnol. 2007;17(3):414-9.

[28] Ge Y, Liu J, Tian G. Growth characteristics of Botryococcus braunii under high CO2 concentration in photobioreactor. Bioresource Technol. 2011;102(1):130-4.

[29] Ono E, Cuello J. Design parameters of solar concentrating systems for CO2 mitigating algal photobioreactors. Energ. Conver. Manage. 2004;29:1651-7.

[30] Eriksen N, Poulsen B, Lonsmann J. Dual sparging laboratory-scale photobioreactor for continuous production of microalgae. J. Appl. Phycol. 1998;10(4):377-82.

[31] Khan S, Hussain M, Prasad S, Banerjee U. Prospects of biodiesel production from microalgae in India. Renew. Sust. Energ. Rev. 2009;13(9):2361-72.

[32] Eroglu E, Melis A. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresource Technol. 2010;101:2359- 66.

[33] Bligh E, Dyer W. A rapid method of total lipid extraction and purification. Canadian Journal of Biochem. and Physiol. 1959;37(8):911-7.

[34] Contreras A, García F, Molina E, Merchuk J.C. Interaction Between CO2 -Mass Transfer, Light Availability, and Hydrodynamic Stress in the Growth of Phaeodactylum tricornutum in a Concentric Tube Airlift Photobioreactor. Biotechnol. Bioeng. 1998;60(3):317-25.

[35] Iwamoto H. Production of hydrocarbons by microalgae. Bio. Sci. Ind. 1986:44;1160-7.

[36] Wolf F, Nanomura A, Bassham J. Growth and branched hydrocarbon production in a strain of Botryococcus braunii. J. Phycol. 1985;21(3):388-96.

[37] Ruangsomboon, S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour. Technol. 2012;109:261-5.

[38] Mazzuca T, Garcia F, Camacho F, Acien F, Molina E. Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors. Biotechnol. Bioeng. 2000;67(4):465-75.

[39] Yoshimura T, Okada S, Honda M. Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: Optimal CO2 , salinity, temperature, and irradiance conditions. Bioresour. Technol. 2013;9:133:232-9.

[40] Ben-Amotz A, Torbene T. G, Thomas W. H. Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 1985;21(1):72-81.

[41] Converti A, Casazza A.A, Ortiz E.Y, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 2009;48:1146-51.

[42] Dayananda C, Sarada R, Usha Rani M, Shamala T.R, Ravishankar G.A. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharide in various media. Biomass Bioenerg. 2007;31(1):87-93.

[43] Yoo C, Jun S, Lee J, Ahh C, Oh H. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technol. 2010;101(1):71-4.

[44] Wackett L.P. Biomass to fuels via microbial transformations. Curr. Opin. Chem. Biol. 2008:12(2):187–93.

[45] Moheimani NR, Matsuura H, Watanabe MM, Borowitzka MA. Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J. Appl. Phycol. 2014;26:1453-63.

[46] Okada S, Murakami M, Yamaguchi K. Hydrocarbon composition of newly isolated strains of green microalga Botryococcus braunii. J. Appl. Phycol. 1995;7(6):555-9.