v. 28 n. 2 (2015): Revista ION
Artigos

Desenvolvimento preliminar de uma metodologia para o abastecimento de CO2 a culturas de Botryococcus braunii para a produção de biocombustíveis

Nestor Andres Jaimes Villarreal
Universidad Industrial de Santander (UIS)
Biografia
Viatcheslav Kafarov
Universidad Industrial de Santander (UIS)
Biografia

Publicado 2015-12-30

Palavras-chave

  • Microalgas,
  • Botryococcus Braunii,
  • CO2,
  • Fotobiorreator,
  • Lipídios e Hidrocarbonetos.

Como Citar

Jaimes Villarreal, N. A., & Kafarov, V. (2015). Desenvolvimento preliminar de uma metodologia para o abastecimento de CO2 a culturas de Botryococcus braunii para a produção de biocombustíveis. REVISTA ION, 28(2). https://doi.org/10.18273/revion.v28n2-2015003

Resumo

Estudos sobre o cultivo de microalgas em escala laboratorial e piloto tem sido o potencial para o cultivo desses microorganismos para a produção de matéria-prima na produção de biocombustíveis. Fornecer uma fonte de carbono para o cultivo em massa de microalgas representa um dos principais constrangimentos no processo de produção; estas fotossinteticamente fixar carbono inorgânico (CO2 ) e sintetizam metabólitos para a produção de biocombustíveis. O presente estudo avaliou a influência de diferentes parâmetros de fornecimento de CO2 nas culturas da espécie Botryococcus braunii em fotobiorreatores à escala laboratorial. Composto Central projetos experimentais foram propostos para correlacionar os parâmetros para avaliar e determinar o seu efeito sobre a diluição de CO2 e produção de metabólitos (biomassa, lipídios e hidrocarbonetos). Em relação aos parâmetros de projeto da fotobiorreator, alturas > 36cm, diâmetro < 7cm e tamanhos pequenos da bolha ajudam a aumentar a diluição de CO2 até 180%. Verificou que altas concentrações de CO2 (> 0,06v/vm) fornecido continuamente são ideais para o crescimento de células. Por outro lado, média de concentrações (0,04 - 0,06v/vm) de CO2 são ideais para a produção de lipídios e baixas concentrações de CO2 (≤ 0,02v/vm) favorecem a produção de hidrocarbonetos. Validada a tensão potencial de B. braunii colombiano para a produção de biodiesel, devido a suas altas taxas de síntese de lipídios.

Downloads

Não há dados estatísticos.

Referências

[1] Garcia Alba L, Torri C, Samori C, Brilman DW. Hydrothermal Treatment (HTT) of Microalgae: Evaluation of the Process As Conversion Method in an Algae Biorefinery Concept. Energ. Fuels. 2012;26(1):642-57.

[2] Energy Information Administration. Annual Energy Review. United States: Department of Energy; 2008.

[3] Wang B, Li Y, Wu N, Lan CQ. CO2 bio-mitigation using microalgae. Appl. Microbiol. Biotechnol. 2008;79(5):707-18.

[4] Li Y, Wang B, Wu N, Lan C. Effects of nitrogen sources on cell growth and lipid production of Neochloris oleoabundans. Appl. Microbiol. Biotechnol. 2008;8:629-36.

[5] Csogör Z, Herrenbauer M, Schmidt K, Posten C. Light distribution in a novel photobioreactor – modeling for optimization. J. Appl. Phycol. 2001;13:325-33.

[6] Lee C. Calculation of Light Penetration Depth in Photobioreactors. Biotechnol. Bioprocess Eng.1999;4(1):78-81.

[7] Kondili E, Kaldellis J. Biofuel implementation in East Europe: current status and future prospects. Renew. Sust. Energ. 2007;11:2137- 51.

[8] De Morais MG, Vieira Costa J. Biofixation of carbon dioxide by Spirulina sp. and Scenedesmus obliquus cultivated in a three stage serial tubular photobioreactor. J. Biotechnol. 2007;129:439-45.

[9] Costa R, Medri W, Perdomo C. High-rate pond for treatment of piggery wastes. Water Sci. Technol. 2000;42(10):357-62.

[10]Bilanovic D, Andargatchew A, Kroeger T, Shelef G. Freshwater and marine microalgae sequestering of CO2 at different C and N concentrations – Response surface methodology analysis. Energ. Convers. Manage. 2009;50(2):262-7.

[11]Falkowski PG, Raven JA. Aquatic photosynthesis. London: Princeton University Press; 1997.

[12]Chisti Y. Biodiesel from microalgae. Biotechnol. Adv. 2007;25(3):294-306.

[13]Beneman J, Hughes E. Biological fossil CO2 mitigation. Energ. Convers. Manage. 1997;38(19):467-73.

[14] Tapie P, Bernard A. Microalgae production technical and economic evaluations. Biotechnol Bioeng. 1988;32(7):873-85.

[15] Abalde A, Cid A, Fidalgo P, Torres E, Herrero C. Microalgas: Cultivos y Aplicaciones. Universidad Da Coruña; 1995. Monografía No.26, p. 210.

[16] Mallick N. Biotechnological potential of immobilized algae for wastewater N, P and metal removal: A review. BioMetals. 2002;15(4):377-90.

[17] Cheng L, Zhang L, Chen H. Carbon dioxide removal from air by microalgae cultured in a membrane-photobioreactor. Sep. Purif. Technol. 2006;50(3):324-9.

[18] Richmond A. Handbook of microalgal culture: biotechnology and applied phycology. United States: Blackwell Science Ltd; 2004.

[19] Li Y, Horsman M, Wu N, Lan C, Dubois-Calero N. Biofuels from microalgae. Biotechnol. Progr. 2008;24(4):815-20.

[20] Raja R, Hemaiswarya S, Kumar N, Sridhar S, Rengasamy R. A perspective on the biotechnological potential of microalgae. Crit. Rev. Microbiol. 2008;34(2):77-88.

[21] Weiss TL, Johnston JS, Fujisawa K, Okada S, Devarenne TP. Genome size and phylogenetic analysis of the A and L races of Botryococcus braunii. J. Appl. Phycol. 2010;23(5):833-9.

[22] Banerjee A, Sharma R, Chisti Y, Banerjee U. Botryococcus braunii: A Renewable Source of Hydrocarbons and Other Chemicals. Crit. Rev. Biotechnol. 2002;22(3):245-79.

[23] Wake L, Hillen L. Study of a ‘bloom’ of the oil-rich alga Botryococcus braunii in the Darwin River Reservoir. Biotechnol. Bioeng. 1980;22(8):1637-56.

[24] Casadevall E, Dif D, Largeau C, Gudin C, Chaumont D, Desanti O. Studies on batch and continuous cultures of Botryococcus braunii: hydrocarbon production in relation to physiological state, cell ultrastructure, and phosphate nutrition. Biotechnol. Bioeng. 1985;27(3):286-95.

[25] Largeau C, Casadevall E, Berkaloff C, Dhamliencourt P. Sites of accumulation and composition of hydrocarbons in Botryococcus braunii. Phytochem. 1980;19:1043-51.

[26] Metzger P, Largeau C. Botryococcus braunii: a rich source for hydrocarbons and related ether lipids. Appl. Microbiol. Biotechnol. 2005;66:486-96.

[27] Ranga Rao A, Sarada R, Ravishankar G. Influence of CO2 on Growth and Hydrocarbon Production in Botryococcus braunii. J. Microbiol. Biotechnol. 2007;17(3):414-9.

[28] Ge Y, Liu J, Tian G. Growth characteristics of Botryococcus braunii under high CO2 concentration in photobioreactor. Bioresource Technol. 2011;102(1):130-4.

[29] Ono E, Cuello J. Design parameters of solar concentrating systems for CO2 mitigating algal photobioreactors. Energ. Conver. Manage. 2004;29:1651-7.

[30] Eriksen N, Poulsen B, Lonsmann J. Dual sparging laboratory-scale photobioreactor for continuous production of microalgae. J. Appl. Phycol. 1998;10(4):377-82.

[31] Khan S, Hussain M, Prasad S, Banerjee U. Prospects of biodiesel production from microalgae in India. Renew. Sust. Energ. Rev. 2009;13(9):2361-72.

[32] Eroglu E, Melis A. Extracellular terpenoid hydrocarbon extraction and quantitation from the green microalgae Botryococcus braunii var. Showa. Bioresource Technol. 2010;101:2359- 66.

[33] Bligh E, Dyer W. A rapid method of total lipid extraction and purification. Canadian Journal of Biochem. and Physiol. 1959;37(8):911-7.

[34] Contreras A, García F, Molina E, Merchuk J.C. Interaction Between CO2 -Mass Transfer, Light Availability, and Hydrodynamic Stress in the Growth of Phaeodactylum tricornutum in a Concentric Tube Airlift Photobioreactor. Biotechnol. Bioeng. 1998;60(3):317-25.

[35] Iwamoto H. Production of hydrocarbons by microalgae. Bio. Sci. Ind. 1986:44;1160-7.

[36] Wolf F, Nanomura A, Bassham J. Growth and branched hydrocarbon production in a strain of Botryococcus braunii. J. Phycol. 1985;21(3):388-96.

[37] Ruangsomboon, S. Effect of light, nutrient, cultivation time and salinity on lipid production of newly isolated strain of the green microalga, Botryococcus braunii KMITL 2. Bioresour. Technol. 2012;109:261-5.

[38] Mazzuca T, Garcia F, Camacho F, Acien F, Molina E. Carbon Dioxide Uptake Efficiency by Outdoor Microalgal Cultures in Tubular Airlift Photobioreactors. Biotechnol. Bioeng. 2000;67(4):465-75.

[39] Yoshimura T, Okada S, Honda M. Culture of the hydrocarbon producing microalga Botryococcus braunii strain Showa: Optimal CO2 , salinity, temperature, and irradiance conditions. Bioresour. Technol. 2013;9:133:232-9.

[40] Ben-Amotz A, Torbene T. G, Thomas W. H. Chemical profile of selected species of microalgae with emphasis on lipids. J. Phycol. 1985;21(1):72-81.

[41] Converti A, Casazza A.A, Ortiz E.Y, Perego P, Del Borghi M. Effect of temperature and nitrogen concentration on the growth and lipid content of Nannochloropsis oculata and Chlorella vulgaris for biodiesel production. Chem. Eng. Process. 2009;48:1146-51.

[42] Dayananda C, Sarada R, Usha Rani M, Shamala T.R, Ravishankar G.A. Autotrophic cultivation of Botryococcus braunii for the production of hydrocarbons and exopolysaccharide in various media. Biomass Bioenerg. 2007;31(1):87-93.

[43] Yoo C, Jun S, Lee J, Ahh C, Oh H. Selection of microalgae for lipid production under high levels carbon dioxide. Bioresource Technol. 2010;101(1):71-4.

[44] Wackett L.P. Biomass to fuels via microbial transformations. Curr. Opin. Chem. Biol. 2008:12(2):187–93.

[45] Moheimani NR, Matsuura H, Watanabe MM, Borowitzka MA. Non-destructive hydrocarbon extraction from Botryococcus braunii BOT-22 (race B). J. Appl. Phycol. 2014;26:1453-63.

[46] Okada S, Murakami M, Yamaguchi K. Hydrocarbon composition of newly isolated strains of green microalga Botryococcus braunii. J. Appl. Phycol. 1995;7(6):555-9.