v. 37 n. 2 (2024): Revista ION
Artigos

Produção de astaxantina em Haematococcus pluvialis sob efeito da deficiência de fosfato e alta intensidade luminosa

Judith Elena Camacho Kurmen
Universidad Colegio Mayor de Cundinamarca
Natalia Rodriguez Rodriguez
Universidad Colegio Mayor de Cundinamarca
Biografia
Resumo gráfico

Publicado 2024-11-20

Palavras-chave

  • Microalgas,
  • Carotenóides,
  • Deficiência de fosfato,
  • Crescimento médio,
  • Alta intensidade luminosa

Como Citar

Camacho Kurmen, J. E., & Rodriguez Rodriguez, N. (2024). Produção de astaxantina em Haematococcus pluvialis sob efeito da deficiência de fosfato e alta intensidade luminosa. REVISTA ION, 37(2), 49–64. https://doi.org/10.18273/revion.v37n2-2024004

Resumo

A astaxantina é um carotenóide produzido pela microalga Haematococcus pluvialis, que acumula até 3 % de astaxantina em peso seco, o que ocorre em condições de estresse, como aumento de luminosidade e limitação de nutrientes. O objetivo estabelecer condições para que H. pluvialis produza astaxantina utilizando alta irradiância e deficiência de fosfato no meio Rudic (RM).
Foram utilizados biorreatores com H.pluvialis UTEX 2505, que continham 20 mg/L (RM1), 30 mg/L (RM2) e 40 mg/L (RM3) de fosfatos, 20 mg/L de fosfatos com 15,013 mg/L de nitratos (RM4) e um controle (RM5), utilizando pH de 6,8, fotoperíodo 20h de luz e 4h de escuro e irradiância de 75 lux na fase de estresse, luz branca, temperatura de 20 ±1 °C. O tratamento que apresentou maior crescimento foi o RM3 com 9,69 x 105 células/mL; A ANOVA (95 %) não estabeleceu diferenças significativas entre os tratamentos (F:0,272; P: 0,895; gl: 4). A maior concentração de clorofila foi para RM3, com 26,2 µg/mL (27 pg/cel.); sem diferenças significativas entre os tratamentos (F: 1,053; P: 0,392; gl: 4). Além disso, o RM3 obteve maior consumo de fosfato (62,5 %); com diferenças significativas entre os tratamentos (F: 3,887; P: 0,011; gl: 4). As alterações morfológicas demonstraram maior acúmulo de células de aplanósporos para RM1 e RM2. O tratamento RM2 obteve maior concentração de astaxantina com 5,772 µg/ mL(6,11 pg/cel); sem diferenças significativas entre os tratamentos (F: 0,622; P: 0,649; gl: 4). Estabelecer que a deficiência de fosfato combinada com alta intensidade luminosa aumenta a produção de astaxantina.

Downloads

Não há dados estatísticos.

Referências

  1. Richmond A. Biological principles of mass cultivation of photoautotrophic microalgae. En: Handbook of microalgal culture: applied phycology and biotechnology. 2 ed. Richmond A, Hu Q, editor. Wiley-Blackwell; 2013. p. 169-204. https://doi.org/10.1002/9781118567166.ch11
  2. García MC, Acién FG, Del Río E, Fernández JM, Cerón CM, Guerrero M, et al. Production of Astaxanthin by Haematococcus pluvialis: Taking the One-Step System Outdoors. Biotechnol. Bioeng. 2009;102:651-657. https://doi.org/10.1002/bit.22076
  3. Li J, Zhu D, Niu J, Shen S, Wang G. An economic assessment of astaxanthin production by large scale cultivation of Haematococcus pluvialis. Biotechnology Advances. 2011;29(6):568-574. https://doi.org/10.1016/j.biotechadv.2011.04.001
  4. Shah MR, Liang Y, Cheng YJ, Daroch M. Astaxanthin- Production Green Microalga Haematococcus pluvialis: From Single Cell to High Value Commercial Products. Front. Plant Sci. 2016;7(531):1-28. https://doi.org/10.3389/fpls.2016.00531
  5. Mussagy CU, Kot A, Dufossé L, Gonçalves CNDP, Pereira JFB, Santos-Ebinuma VC, et al. Microbial astaxanthin: from bioprocessing to the market recognition. Applied Microbiology and Biotechnology, 2023;107:4199-4215. https://doi.org/10.1007/s00253-023-12586-1
  6. Camacho JE, González G, Klotz B. Producción de astaxantina en Haematococcus pluvialis bajo diferentes condiciones de estrés. NOVA. 2013;11(19):93-104.
  7. Córdoba Astroc N, Acero Reyes N, Duque Buitrago L, Jiménez Aguilar J, Serna Jiménez JA. Obtención y caracterización de astaxantina de la microalga Haematococcus pluvialis. UGCiencia. 2015;21:73-82. https://doi.org/10.18634/ugcj.21v.1i.426
  8. Niño Castillo CM, Rodríguez Rivera FC, Díaz LE, Lancheros Díaz AG. Evaluación de las condiciones de crecimiento celular para la producción de astaxantina a partir de la microalga Haematococcus pluvialis. NOVA. 2017;15(28):19-31.
  9. He P, Ducan J, Barber J. Astaxanthin Accumulation in the Green Alga Haematococcus pluvialis: Effects of Cultivation Parameters. Journal of Integrative Plant Biology. 2007;49(4):447-451. https://doi.org/10.1111/j.1744-7909.2007.00468.x
  10. López GL, Ponce T, Flores CM, Cristini E, Cañizares RO. Estimulación de la carotenogénesis en Haematococcus pluvialis mediante la adición de CO2 . En: XIII Congreso Nacional de Biotecnología y Bioingeniería. 2009.
  11. Imamoglu E, Conk M, Vardar F. Influences of different stress media and high light intensities on accumulation of astaxanthin in the green alga Haematococcus pluvialis. New Biotechnology. 2009;26(3-4):199-204. https://doi.org/10.1016/j.nbt.2009.08.007
  12. Kang CD, Han SJ, Choi SP, Sim SJ. Fed-batch culture of astaxanthin-rich Haematococcus pluvialis by exponential nutrient feeding and stepwise light supplementation. Bioprocess Biosyst Eng. 2010;33:133-139. https://doi.org/10.1007/s00449-009-0362-5
  13. Nagaraja S, Arulmurugana P, Rajarama MG, Sundararajb R, Rengasamy R. Enhanced production of astaxanthin at different physico-chemical parameters in the green alga Haematococcus pluvialis Flotow. Phykos. 2012;42(1):59– 71.
  14. Xu Jiajie XJ, Galan A, Zhao Fengmin ZF, Cao Youfu CYF, Liu Wei LW, Su Xiurong SX. Kinetic model analysis of Haematococcus pluvialis in a cultivation optimization to accumulate lipids. IAEJ. 2012;22(3-4):74-81.
  15. Chul J, Phill C, Hong ME, Jun S. Enhanced astaxanthin production from microalga Haematococcus pluvialis by two- stage perfusion culture with stepwise light irradation. Bioprocess Biocyst Eng. 2014;37:2039-2047. https://doi.org/10.1007/s00449-014-1180-y
  16. Kumar C. Studies on Production Potential of Astaxanthin by Haematococcus pluvialis (Tesis doctoral). Nueva Delhi, India: Indian Agricultural Research Institute; 2014.
  17. Miranda A, Meneses O, Hoyos H, Sáez A, Vargas G. Evaluación del efecto de las bajas concentraciones de fosfato en el crecimiento y acumulación de astaxantina en Haematococcus pluvialis UTEX 2505. III Congreso Colombiano de Bioquímica y Biología Molecular. 2018.
  18. Miranda AM, Ossa EA, Vargas GJ, Sáez AA. Efecto de las bajas concentraciones de Nitratos y Fosfatos sobre la Acumulación de Astaxantina en Haematococcus pluvialis UTEX 2505. Inf. tecnol. 2019;30(1):23-32. http://dx.doi.org/10.4067/S0718-07642019000100023
  19. Li F, Cai M, Lin M, Huang X, Wang J, Zheng X, et al. Accumulation of Astaxanthin Was Improved by the Nonmotile Cells of Haematococcus pluvialis. BioMed Research International. 2019;2019:8101762. https://doi.org/10.1155/2019/8101762
  20. Gómez L, Orozco MI, Quiroga C, Díaz JC, Huérfano J, Díaz LE, et al. Producción de Astaxantina y expresión de genes en Haematococcus pluvialis (Chlorophyceae, Volvocales) bajo condiciones de estrés por deficiencia de nitrógeno y alta irradiancia. Revista Mutis. 2019;9(2):7-24. https://doi.org/10.21789/22561498.1532
  21. Galvão RM, Sanatana TS, Fontes CH, Sales EA. Modeling of Biomass Production of Haematococcus pluvialis. Applied Mathematics. 2013;4:50-56. https://doi.org/10.4236/am.2013.48A008
  22. Imamoglu E, Vardar Sukan F, Conk Dalay M. Effect of different culture media and light intensities on growth of Haematococcus pluvialis. Int. J. Nat. Sci. 2007;1(3):05-09.
  23. Sun H, Guan B, Kong Q, Geng Z, Wang. Repeated cultivation: noncell disruption extraction of astaxanthin for Haematococcus pluvialis. Scientific Reports. 2016;6(20578):1-12. https://doi.org/10.1038/srep20578
  24. Ding D, Chen S, Peng S, Jiang C, Zheng L, Li J. Strategies of phosphorus utilization in an astaxanthin producing green alga Haematococcus pluvialis, a comparison with a bloom-forming cyanobacterium Microcystis wesenbergii. Aquat Ecol. 2019;53:679-688. https://doi.org/10.1007/s10452-019-09718-z
  25. Yuan J-P, Chen F. Hydrolysis Kinetics of Astaxanthin Esters and Stability of Astaxanthin of Haematococcus pluvialis during Saponification. J. Agric. Food Chem. 1999;47:31-35. https://doi.org/10.1021/jf980465x
  26. Tocquin P, Fratamico A, Franck F. Screening for a low-cost Haematococcus pluvialis medium reveals an unexpected impact of a low N/P ratio on vegetative growth. J Appl Phycol. 2012;24,365–373. https://doi.org/10.1007/s10811-011-9771-3
  27. Baranyi J, Roberts T. A dynamic approach to predicting bacterial growth in food. Int. J. Food Microbiol. 1994;23(3):277-294.https://doi.org/10.1016/0168-1605(94)90157-0
  28. Wang J, Sommerfeld MR, Lu C, Hu Q. Combined effect of initial biomass density and nitrogen concentration on growth and astaxanthin production of Haematococcus pluvialis (Chlorophyta) in outdoor cultivation. Algae. 2013;28(2):193-202. https://doi.org/10.4490/algae.2013.28.2.193
  29. Liyanaarachchi VC, Nishshanka GKSH, Premaratne RGMM, Ariyadasa TU, Nimarshana PHV, Malik A. Astaxanthin accumulation in the green microalga Haematococcus pluvialis: Effect of initial phosphate concentration and stepwise/continuous light stress. Biotechnology Reports, 2020;28:e00538. https://doi.org/10.1016/j.btre.2020.e00538
  30. Liu JG, van der Meer J, Zhang LT, Zhang Y. Cultivation of Haematococcus pluvialis for astaxanthin production. En: Microalgal Production for Biomass and High-Value Products. Slocombe SP, Benemann JR, editor. New York, USA: CRC Press; 2016. p. 267–293.
  31. Ranjbar R, Inoue R, Shiraishi H, Katsuda T, Katoh S. High efficiency production ofastaxanthin by autotrophic cultivation of Haematococcus pluvialis in a bubble column photobioreactor. Biochem. Eng. J. 2007;39(3):575-580. https://doi.org/10.1016/j.bej.2007.11.010