Aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica

Resumen

Hoy en día, las redes neuronales artificiales y el deep learning, son dos de las herramientas más poderosas del aprendizaje de máquina, que tienen por objetivo desarrollar sistemas que aprenden automáticamente, reconocen patrones, predicen comportamientos y generalizan información a partir de conjuntos de datos.  Estas dos herramientas se han convertido en un potencial campo de investigación con aplicaciones a la ingeniería, no siendo la ingeniería biomédica la excepción. En este artículo se presenta una revisión actualizada de las principales aplicaciones de las redes neuronales y el deep learning a la ingeniería biomédica en las ramas de la ómica, la imagenología, las interfaces cerebro-máquina y hombre-máquina, y la gestión y administración de la salud pública; ramas que se extienden desde el estudio de procesos a nivel molecular, hasta procesos que involucran grandes poblaciones.

Palabras clave: aprendizaje de máquina, inteligencia artificial, reconocimiento de patrones, ómica, bioinformática, biomedicina, imagenología, interfaces cerebro-máquina, interfaces hombre-máquina, salud pública

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] S. Shalev-Schwartz, S. Ben-David.K.C, Understanding Machine Learning: From Theory to Algorithms. NY, USA: Cambridge University Press, 2014.

[2] M. T. Hagan et al, Neural Network Design (2nd Edition). USA: Oklahoma State University, 2014.

[3] J. Schmidhuber, “Deep learning in neural networks: An overview”, Neural Networks, vol. 61, pp. 85-117, 2015, doi: 10.1016/j.neunet.2014.09.003

[4] H. S. Wolff, Biomedical Engineering. NY, USA: McGraw-Hill, 1970.

[5] F. Rosenblatt, “The Perceptron: A probabilistic model for information storage and organization in the brain”, Psychological Review, vol. 65, no. 6, pp. 386-408, 1958, doi: 10.1037/h0042519

[6] J. J. Hopfield, “Neural networks and physical systems with emergent collective computational abilities”, en Proceedings of the National Academy of Sciences, 1982, pp. 2254-2558, doi: 10.1073/pnas.79.8.2554

[7] T. Kohonen, Self-Organizing Maps. Berlin, Germany: Springer Series in Informatic Sciences, 1991.

[8] G. E. Hinton y R. R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks”, Science, vol. 313, no. 5786, pp. 504-507, 2006, doi: 10.1126/science.1127647

[9] S. Hochreiter y J. Schmidhuber, “Long Short-Term Memory”, Neural Computation, vol. 9, no. 8 pp. 1735-1780, 1997, doi: 10.1162/neco.1997.9.8.1735

[10] N. Zhang et al, “An overview on Restricted Boltzmann Machines”, Neurocomputing, vol. 275, pp. 1186-1199, 2018, doi: 10.1016/j.neucom.2017.09.065

[11] G. E. Hinton, S. Osindero, Y. W. Teh, “A fast learning algorithm for deep belief nets”, Neural Computing, vol. 18, no. 7 pp. 1527-1554, 2008, doi: 10.1162/neco.2006.18.7.1527

[12] M. D. Zeiler y R. Fergus, “Visualizing and Understanding Convolutional Networks”, en European Conference on Computer Vision, 2014, pp. 818-833, doi: 10.1007/978-3-319-10590-1_53

[13] A. Krizhevsky, I. Sutskever, y G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks”, en Proceedings of the 25th International Conference on Neural Information Processing Systems, Lake Tahoe, Nevada, 2012, pp. 1097-1105, doi: 10.1145/3065386

[14] D. Ravi et al, “Deep Learning in Health Informatics”, IEEE Journal of Biomedical and Health Informatics, vol. 21, no. 1, pp. 4-21, 2017, doi: 10.1109/JBHI.2016.2636665

[15] P. Mamoshina et al, “Applications of Deep Learning in Biomedicine”, Mol. Pharmaceutics, vol. 13, no. 5, pp. 1445-1454, 2016, doi: 10.1021/acs.molpharmaceut.5b00982

[16] A. Nath, P. Kumari, y R. Chaube, “Prediction of Human Drug Targets and Their Interactions Using Machine Learning Methods: Current and Future Perspectives”, Methods in molecular biology, vol. 1762, pp. 21-30, 2018, doi: 10.1007/978-1-4939-7756-7_2

[17] Y. Xiong et al, “Survey of Computational Approaches for Prediction of DNA-Binding Residues on Protein Surfaces”, Methods in molecular biology, vol. 1754, pp. 223-234, 2018, doi: 10.1007/978-1-4939-7717-8_13

[18] A. Shehu, D. Barbará, K. Molloy, “A Survey of Computational Methods for Protein Function Prediction”, en Dig Data Analytics in Genomics, Springer, 2016, pp. 225-298, doi: 10.1007/978-3-319-41279-5_7

[19] M. K. K. Leung et al, “Machine Learning in Genomic Medicine: A Review of Computational Problems and Data Sets”, en Proceedings of the IEEE, 2016, pp. 176-197, doi: 10.1109/JPROC.2015.2494198

[20] M. W. Libbrecht y W. S. Noble, “Machine learning applications in genetics and genomics”, Nature Reviews Genetics, vol. 16, no. 6, pp. 321-332, 2015, doi: 10.1038/nrg3920

[21] Y. Yuan et al, “DeepGene: an advanced cancer type classifier based on deep learning and somatic point mutations”, BMC Bioinformatics, vol. 17, no. 17, pp. 243-256, 2016, doi: 10.1186/s12859-016-1334-9

[22] M. Khademi y N. S. Nedialko, “Probabilistic Graphical Models and Deep Belief Networks for Prognosis of Breast Cancer”, en 2015 IEEE 14th International Conference on Machine Learning and Applications, Miami, FL, 2015, pp. 727-732, doi: 10.1109/ICMLA.2015.196

[23] R. Fakoor et al, “Using deep learning to enhance cancer diagnosis and classification”, en The 30th International Conference on Machine Learning, Atlanta, GA, 2013.

[24] R. Ibrahim et al, “Multi-level gene/MiRNA feature selection using deep belief nets and active learning”, en 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2014, pp. 3957-3960, doi: 10.1109/EMBC.2014.6944490

[25] P. Danaee, R. Ghaeini, y D. A. Hendrix, “A deep learning approach for cancer detection and relevent gene identification”, en Proceedings of the Pacific Symposium on Biocomputing, 2017, pp. 219-229, doi: 10.1142/9789813207813_0022

[26] M. Frasca y G. Pavesi, “A Neural Network Based Algorithm for Gene Expression Prediction from Chromatin Structure”, en The 2013 Itnernational Joint Conference on Neural Networks, Dallas, TX, 2013, doi: 10.1109/IJCNN.2013.6706954

[27] R. Singh et al, “DeepChrome: deep-learning for predicting gene expression from histone modifications”, Bioinformatics, vol. 32, no. 17, pp. i639-i648, 2016, doi: 10.1093/bioinformatics/btw427

[28] R. Xie et al, “A deep auto-encoder model for gene expression prediction”, BMC Genomics, vol. 18, no. 9, pp. 39-49, 2017, doi: 10.1186/s12864-017-4226-0

[29] T. Lee y S. Yoon, “Boosted Categorical Restricted Boltzmann Machine for Computational Prediction of Splice Junctions”, en Proceedings of the 32nd Inernational Conference on Machine Learning, Lille, 2015, pp. 2483-2492.

[30] M. K. K. Leung et al, “Deep learning of the tissue-regulated splicing code”, Bioinformatics, vol. 30, no. 12, pp. i121-i129, 2014, doi: 10.1093/bioinformatics/btu277

[31] D. R. Kelley, J. Snoek, y J. L. Rinn, “Basset: learning the regulatory code of the accessible genome with deep convolutional neural networks”, Genome Research, vol. 26, no. 7, pp. 900-999, 2016, doi: 10.1101/gr.200535.115

[32] J. Zhou y O. G. Trovanskava, “Predicting effects of noncoding variants with deep learning-based sequence model”, Nature Methods, vol. 12, no. 10, pp. 931-934, 2015, doi: 10.1038/nmeth.3547

[33] D. Quang y X. Xie, “DanQ: a hybrid convolutional and recurrent deep neural network for quantifying the function of DNA sequences”, Nucleic Acids Research, vol. 44, no. 11, pp. e107-e112, 2016, doi: 10.1093/nar/gkw226

[34] H. Zeng y D. K. Gifford, “Predicting the impact of non-coding variants on DNA methylation”, Nucleic Acids Research, vol. 45, no. 11, pp. e99-e109, 2017, doi: 10.1093/nar/gkx177

[35] C. Angemueller et al, “DeepCpG: accurate prediction of single-cell DNA methylation states using deep learning”, Genome Biology, vol. 18, no. 1, 2017, doi: 10.1186/s13059-017-1189-z

[36] C. Fang, Y. Shang, y D. Xu, “Prediction of Protein Backbone Torsion Angles Using Deep Residual Inception Neural Networks”, IEEE/AC, Transactions on Computational Biology and Bioinformatics, vol. 16, no. 3, pp. 1020-1028, 2018, doi: 10.1109/TCBB.2018.2814586

[37] Y. Gao et al, “RaptorX-Angle: real-value prediction of protein backbone dihedral angles through a hybrid method of clustering and deep learning”, BMC Bioinformatics, vol. 19, no. 100, 2018, doi: 10.1186/s12859-018-2065-x

[38] H. Li et al, “Deep learning methods for protein torsion angles prediction”, BMC Bioinformatics, vol. 18, no. 1, 2017, doi: 10.1186/s12859-017-1834-2

[39] L. T. Hattori, C. M. Vargas Benítez, y H. Silvéiro Lopes, “A Deep Bidirectional Long Short-Term Memory Approach Applied to the Protein Secondary Structure Prediction Problem”, en 2017 IEEE Latin American Conference on Computational Intelligence, Arequipa, 2017, pp. 66-71, doi: 10.1109/la-cci.2017.8285678

[40] C. Fang, Y. Shang, y D. Xu, “A New Deep Neighbor Residual Network For Protein Secondary Structure Prediction”, en 2017 International Conference on Tools with Artificial Intelligence, Boston, MA, 2017, pp. 66-71, doi: 10.1109/ictai.2017.00022

[41] Y. Hu et al, “Sequence Translating Model Using Deep Neural Block Cascade Network: Taking Protein Secondary Structure Prediction as An Example”, en 2018 IEEE International Conference on Big Data and Smart Computing, Shangai, 2018, pp. 58-65, doi: 10.1109/BigComp.2018.00018

[42] Y. Liu, “Protein Secondary Structure Prediction Based on Two Dimensional Deep Convolutional Neural Networks”, en 2017 3rd IEEE Internationl Conference on Computer and Communications, Chengdu, 2017, pp. 1995-1999, doi: 10.1109/CompComm.2017.8322886

[43] Y. Chen, “Long sequence feature extraction based on deep learning neural network for protein secondary structure prediction”, en 2017 IEEE 3rd Information Technology and Mechatronics Engineering Conference, Chongqing, 2017, pp. 843-847, doi: 10.1109/ITOEC.2017.8122472

[44] W. Ibrahim y M. S. Abadeh, “Protein fold recognition using Deep Kernelized Extreme Learning Machine and linear discriminant analysis”, Neural Computing and Applications, vol. 31, no. 8, pp. 4201-4214, 2018, doi: 10.1007/s00521-018-3346-z

[45] L. Bai y L. Yang, “A Unified Deep Learning Model for Protein Structure Prediction”, en 2017 3rd IEEE International Conference on Cybernetics, Exeter, 2017, pp. 1-6, doi: 10.1109/cybconf.2017.7985752

[46] L. Deng, C. Fan, y Z. Zeng, “A sparse autoencoder-based deep neural network for protein solvent accessibility and contact number prediction”, BMC Bioinformatics, vol. 18, no. S6, pp. 211-220, 2017, doi: 10.1186/s12859-017-1971-7

[47] H. Li, Q. Lyu y J. Cheng, “A Template-Based Protein Structure Reconstruction Method Uswing Deep Autoencoder Learning”, Journal of Proteomics and Bioinformatics, vol. 9, no. 12, pp. 306-313, 2016, doi: 10.4172/jpb.1000419

[48] S. P. Nguyen, Z. Li, y Y. Shang, “Deep Networks and Continuous Distributed Representation of Protein Sequences for Protein Quality Assessment”, en 2017 International Conference on Tools with Artificial Intelligence, 2017, pp. 527-534, doi: 10.1109/ICTAI.2017.00086

[49] S. P. Nguyen, Y. Shang, y D. Xu, “DL-PRO: A Novel Deep Learning Method for Protein Model Quality Assessment”, en 2014 International Joint Conference on Neural Networks, Beijing, 2014, pp. 2071-2078, doi: 10.1109/IJCNN.2014.6889891

[50] J. Wang, Z. Li y Y. Shang, “New Deep Neural Networks for Protein Model Evaluation”, en 2017 IEEE 29th International Conference on Tools with Artificial Intelligence, Boston, MA, 2017, pp. 309-313, doi: 10.1109/ICTAI.2017.00056

[51] S. P. Nguyen et al, “New Deep Learning Methods for Protein Loop Modeling”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 16, no. 2, pp. 596-606, 2019, doi: 10.1109/TCBB.2017.2784434

[52] J. Eickholt y J. Cheng, “DNdisorder: predicting protein disorder using boosting and deep networks”, BMC Bioinformatics, vol. 14, no. 1, pp. 88-98, 2013, doi: 10.1186/1471-2105-14-88

[53] H. Zeng et al, “Convolutional Neural Network Architectures for Predicting DNA-Protein Binding”, Bioinformatics, vol. 32, pp. i121-i127, 2016, doi: 10.1093/bioinformatics/btw255

[54] I. Haberal y H. Ogul, “DeepMBS: Prediction of Protein Metal Binding-Site Using Deep Learning Methods”, en 2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry, Corfu, 2017, pp. 21-25, doi: 10.1109/MCSI.2017.13

[55] L. Huang et al, “Protein-Protein Interactions Prediction via Multimodal Deep Polynomial Network and Regularized Extreme Learning Machine”, IEEE Journal of Biomedical and Health Informatics, vol. 23, no. 3, pp. 1290-1303, 2019, doi: 10.1109/JBHI.2018.2845866

[56] L. Huang, L. Liao, y C. H. Wu, “Completing sparse and disconnected protein-protein network by deep learning”, BMC Bioinformatics, vol. 19, no.1, pp. 103-115, 2018, doi: 10.1186/s12859-018-2112-7

[57] Z. Zhao y X. Gong, “Protein-Protein Interaction Interface Residue Pair Prediction Based on Deep Learning Architecture”, IEEE/ACM Transactions on Computational Biology and Bioinformatics, vol. 16, no. 5, pp. 1753-1759, 2017, doi: 10.1109/TCBB.2017.2706682

[58] M. Hamanaka et al, “CGBVS-DNN: Prediction of Compund-protein Interactions Based on Deep Learning”, Molecular Informatics, vol. 36, no. 1, 2016, doi: 10.1002/minf.201600045

[59] K. Tian et al, “Boosting compound- protein interaction prediction by deep learning”, Methods, vol. 110, pp. 64-72, 2016, doi: 10.1016/j.ymeth.2016.06.024

[60] L. Wang et al, “A Computational-Based Method for Predicting Drug-Target Interactions by Using Stacked Autoencoder Deep Neural Network”, Journal of Computational Biology, vol. 25, no. 3, pp. 361-373, 2018, doi: 10.1089/cmb.2017.0135

[61] P. Wei, K. C. C. Chan, y Z. You, “Large-scale prediction of drug-target interactions from deep representations”, en 2016 International Joint Conference on Neural Networks, Vancouver, 2016, pp. 1236-1243, doi: 10.1109/ijcnn.2016.7727339

[62] M. Bahi y M. Batouche, “Drug-Target Interaction Prediction in Drug Repositioning Based on Deep Semi-Supervised Learning”, en IFIP Advances in Information and Communication Technology , 2018, pp. 302-313, doi: 10.1007/978-3-319-89743-1_27

[63] H. Greenspan, B. van Ginneken, y R. M. Summers, “Guest Editorial Deep Learning in Medical Imaging: Overview and Future Promise of an Exciting New Technique”, IEEE Transactions on Medical Imagig, vol. 35, no. 5, pp. 1153-1159, 2016, doi: 10.1109/TMI.2016.2553401

[64] P. Khosravi et al, “Deep Convolutional Neural Networks Enable Discrimination of Heterogeneous Digital Pathology Images”, EBioMedice, vol. 27, pp. 317-328, 2018, doi: 10.1016/j.ebiom.2017.12.026

[65] K. Sirinukunwattana et al, “Locality Sensitive Deep Learning for Detection and Classification of Nuclei in Routine Colon Cancer Histology Images”, IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1196-1206, 2016, doi: 10.1109/TMI.2016.2525803

[66] J. Chen et al, “Computer-aided prognosis on breast cancer with hematoxylin and eosin histopathology images: A review”, Tumor Biology, vol. 39, no. 3, pp. 1-12, 2017, doi: 10.1177/1010428317694550

[67] M. A. Aswathy y M. Jagannath, “Detection of breast cancer on digital histopathology images: Present status and future possibilities”, Informatics in Medicine Unlockes, vol. 8, pp. 74-79, 2017, doi: 10.1016/j.imu.2016.11.001

[68] Z. Gandomkar, P. Brennan, y C. Mello-Thoms, “Computer-based image analysis in breast pathology”, Journal of Pathology Informatics, vol. 7, no. 43, 2016, doi: 10.4103/2153-3539.192814.

[69] H. R. Roth et al, “Anatomy-specific classification of medical images using deep convolutional nets”, en 2015 IEEE 12th International Symposium on Biomedical Imaging, 2015, pp. 101-104, doi: 10.1109/ISBI.2015.7163826

[70] M. R. Avendi, A. Kheradvar, y H. Jafarkhani, “A combined deep-learning and deformable-model approach to fully automatic segmentation of the left ventricle in cardia MRI”, Medical Image Analysis, vol. 30, pp. 108-119, 2016, doi: 10.1016/j.media.2016.01.005

[71] J. Yu et al, “A hybrid convolutional neural networks with extreme learning machine for WCE image classification”, en 2015 IEEE International Conference on Robotics and Biomimetics, Zhuhai, 2015, pp. 1822-1827, doi: 10.1109/ROBIO.2015.7419037

[72] H. Chen et al, “Standard Plane Localization in Fetal Ultrasound via Domain Transferred Deep Neural Networks”, IEEE Journal of Biomedical and Health Informatics, vol. 19, no. 5, pp. 1627-1636, 2015, doi: 10.1109/JBHI.2015.2425041

[73] M. Anthimopoulus et al, “Lung Pattern Classification for Interstitial Lung Diseases Using a Deep Convolutional Neural Network”, IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1207-1216, 2016, doi: 10.1109/TMI.2016.2535865

[74] J. Shan y L. Li, “A Deep Learning Method for Microaneurysm Detection in Fundus Images”, en 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies, Washington, DC, 2016, pp. 357-358, doi: 10.1109/chase.2016.12.

[75] Q. Dou et al, “Automatic Detection of Cerebral Microbleeds From MR Images via 3D Convolutional Neural Networks”, IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1182-1195, 2016, doi: 10.1109/TMI.2016.2528129

[76] D. Nie et al, “3D Deep Learning for Multi-modal Imaging-Guided Survival Time Prediction of Brain Tumor Patients”, Med. Image Comput. Comput. Assist. Interv., vol. 9901, pp. 212-220, 2016, doi: 10.1007/978-3-319-46723-8_25

[77] H. Suet et al, “Hiearchical feature representation and multimodal fusion with deep learning for AD/MCI diagnosis”, NeuroImage, vol. 101, pp. 569-582, 2014, doi: 10.1016/j.neuroimage.2014.06.077

[78] Y. Cao et al, “Improving Tuberculosis Diagnostics Using Deep Learning and Mobile Health Technologies among Resource-Poor and Marginalized Communities”, en 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies, Washington, DC, 2016, pp. 274-281, doi: 10.1109/CHASE.2016.18

[79] M. J. J. P. van Grinsven et al, “Fast Convolutional Neural Network Training Using Selective Data Sampling: Application to Hemorrhage Detection in Color Fundus Images”, IEEE Transactions on Medical Imaging, vol. 35, no. 5, pp. 1273-1284, 2016, doi: 10.1109/TMI.2016.2526689

[80] T. C. Major y J. M. Conrad, “A survey of brain computer interfaces and their applications”, en IEEE SOUTHEASTCON 2014, Lexington, KY, 2014, pp. 1-8, doi: 10.1109/SECON.2014.6950751

[81] M. Atzori, M. Cognolato, y H. Müller, “Deep Learning with Convolutional Neural Networks Applied to Electromyography Data: A Resource for the Classifications of Movements for Prosthetics Hands”, Frontiers in Neurorobotics, vol. 10, no. 9, 2016, doi: 10.3389/fnbot.2016.00009

[82] W. Geng et al, “Gesture recognition by instantaneous surface EMG images”, Scientific Reports, vol. 6, no. 1, 2016, doi: 10.1038/srep36571

[83] C. Li et al, “PCA and deep learning based myoelectric grasping control of a prosthetic hand”, BioMedical Engineering OnLine, vol. 17, no. 1, 2018, doi: 10.1186/s12938-018-0539-8

[84] K. Vonsevych et al, “Fingers Movements Control System Based on Artificial Neural Network Model”, Radioelectronics and Communications Systems, vol. 62, no. 1, pp. 23-33, 2019, doi: 10.3103/S0735272719010047

[85] C. Calderón-Cordová et al, “EMG signal patterns recognition based on feedforward Artificial Neural Network applied to robotic prosthesis myoelectric control”, en 2016 Future Technologies Conference, San Francisco, CA, 2017, pp. 868-875, doi: 10.1109/FTC.2016.7821705

[86] M. R. Pambudi, R. Sigit, y T. Harnoso, “The bionic hand movement using myo sensor and neural networks”, en 2016 International Conference on Knowledge Creation and Intelligent Computing, Manado, 2016, pp. 259-264, doi: 10.1109/KCIC.2016.7883656

[87] M. Poggi y S. Mattoccia, “A wearable mobility aid for the visually impaired based on embedded 3D vision and deep learning”, en 2016 IEEE Symposium on Computers and Communication, Messina, 2016, pp. 208-213, doi: 10.1109/ISCC.2016.7543741

[88] J. Huang et al, “Sign language recognition using real-sense”, en 2015 IEEE China Summit and International Conference on Signal and Information Processing, Chengdu, 2015, pp. 166-170, doi: 10.1109/ChinaSIP.2015.7230384

[89] P. Pouladzadeh et al, “Food calorie measurement using deep learning neural network”, en 2016 IEEE International Instrumentation and Measurement Technology Conference Proceeding, Taipei, 2016, pp. 1-6, doi: 10.1109/I2MTC.2016.7520547

[90] P. Kuhad, A. Yassine y S. Shimohammadi, “Using distance estimation and deep learning to simplify calibration in food calorie measurement”, en 2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications, Shenzhen, 2015, pp. 1-6, doi: 10.1109/CIVEMSA.2015.7158594

[91] C. Sri-ngernyuang et al, “Neural Network for On-bed Movement Pattern Recognition”, en The 2018 Biomedical Engineering International Conference, 2018, pp. 1-4, doi: 10.1109/BMEiCON.2018.8609998

[92] J. H. Tan et al, “Application of Stacked Convolutional and Long Short-Term Memory Network for Accurate Identification of CAD ECG Signals”, Computers in Biology and Medicine, vol. 94, pp. 19-26, 2018, doi: 10.1016/j.compbiomed.2017.12.023

[93] U. R. Acharya et al, “Application of deep convolutional neural network for automated detection of myocardial infarction using ECG signals”, Information Sciences, vol. 415, pp. 190-198, 2017, doi: 10.1016/j.ins.2017.06.027

[94] J. T. Turner et al, “Deep Belief Networks used on High Resolution Multichannel Electroencephalography Data for Seizure Detection”, en AAAI Spring Symposium, 2014, pp. 75-81.

[95] Y. Zhao y L. He, “Deep Learning in the EEG Diagnosis of Alzheimer’s Disease”, en ACCV Workshops 2014, 2014, pp. 340-353, doi: 10.1007/978-3-319-16628-5_25

[96] U. R. Acharya et al, “Automated EEG-based Screening of Depression Using Deep Convolutional Neural Network”, Computer Methods and Programs in Biomedicine, vol. 161, pp. 103-113, 2018, doi: 10.1016/j.cmpb.2018.04.012

[97] L. Fraiwan y K. Lweesy, “Neonatal sleep state identification using deep learning autoencoders”, en 2017 IEEE 13th International Colloquium on Signal Processing & its Applications, Batu Ferringhi, 2017, pp. 228-231, doi: 10.1109/CSPA.2017.8064956

[98] Y. I. Al Mashhdany y M. K. Awsaj, “Detection of muscles diseases based on EMG signal by using locally recurrent neural networks (LRNNs) techniques”, International Journal of Engineering & Technology, vol. 7, no. 4, pp. 4850-4855, 2016, doi: 10.14419/ijet.v7i4.25747

[99] N. S. El Jerjawi y S. S. Abu-Naser, “Diabetes Prediction Using Artificial Neural Network”, International Journal of Advanced Science and Technology, vol. 124, pp. 1-10, 2018, doi: 10. 14257/ijast.2018.124.01

[100] S. Srivastava et al, “Precition of Diabetes Using Artificial Neural Network Approach”, Engineering Vibration, Communcication and Information, pp. 679-687, 2018, doi: 10.1007/978-981-13-1642-5_59

[101] P. Rahimloo y A. Jafarian, “Prediction of Diabetes by Using Artificial Neural Network, Logistic Regression Statistical Model and Combination of Them”, Bulletin de la Société Royale des Sciences de Liége, vol. 85, pp. 1148-1164, 2016.

[102] L. Zhao et al, “SimNest: Social Media Nested Epidemic Simulation via Online Semi-Supervised Deep Learning”, en 2015 IEEE International Conference on Data Mining, Atlantic City, NJ, 2015, pp. 639-648, doi: 10.1109/ICDM.2015.39

[103] B. Zou et al, “On Infectious Intestinal Disease Surveillance using Social Media Content”, en Proceedings of the 6th International Conference on Digital Health, Montreal, 2016, pp. 157-161, doi: 10.1145/2896338.2896372

[104] V. R. K. Garimella, A. Alfayad, y I. Weber, “Social Media Image Analysis for Public Health”, en Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems, San Jose, CA, 2016, pp. 5543-5547, doi: 10.1145/2858036.2858234

[105] N. Phan et al, “Social restricted Boltzmann Machine: Human behavior prediction in health social networks”, en 2015 IEEE/ACM International Conference on Advances in Social Networks and Mining, Paris, 2015, pp. 424-431, doi: 10.1145/2808797.2809307

[106] B. T. Ong, K. Sugiura, y K. Zettsu, “Dynamically pre-trained deep recurrent neural networks using environmental monitoring data for predicting PM2.5”, Neural Computing and Applications, vol. 27, no. 6, pp. 1553-1566, 2015, doi: 10.1007/s00521-015-1955-3

[107] M. R. Delavar et al, “A Novel Method for Improving Air Pollution Prediction Based on Machine Learning Approaches: A Case Study Applied to the Capital City of Theran”, International Journal of Geo-Information, vol. 8, no. 2, pp. 99-119, 2019, doi: 10.3390/ijgi8020099

[108] M. Blagojevic et al, “Artificial neural network model for predicting air pollution. Case study of the Moravica district, Serbia”, Environment Protection Engineering, vol. 44, no. 1, pp. 129-139, 2018, doi: 10.5277/epel80110

[109] X. Feng et al, “Artificial neural networks forecastng of PM2.5 pollution using air mass trajectory based geographic model and wavelet transformation”, Atmospheric Environment, vol. 107, pp. 118-128, 2015, doi: 10.1016/j.atmosenv.2015.02.030

[110] N. Srivastava et al, “Dropout: A Simple Way to Prevent Neural Networks from Overfitting”, Journal of Machine Learning Research, vol. 15, pp. 1929-1958, 2014.
Publicado
2020-07-27