Vol. 19 Núm. 3 (2020): Revista UIS Ingenierías
Artículos

Evaluación de la mezcla de un coagulante químico-natural en el proceso de clarificación de una ciénaga

Kevin Padilla-García
Universidad del Atlántico
Gisella Pimienta-Rodríguez
Universidad del Atlántico
Iván Dario Mercado-Martínez
Universidad del Atlantico

Publicado 2020-05-03

Palabras clave

  • Clarificación,
  • prueba de jarras,
  • remoción,
  • turbidez

Cómo citar

Padilla-García, K., Pimienta-Rodríguez, G., & Mercado-Martínez, I. D. (2020). Evaluación de la mezcla de un coagulante químico-natural en el proceso de clarificación de una ciénaga. Revista UIS Ingenierías, 19(3), 49–60. https://doi.org/10.18273/revuin.v19n3-2020005

Resumen

En esta investigación se realizó la evaluación del poder coagulante del sulfato de aluminio y la mezcla de sulfato de aluminio-almidon de yuca (Manihot esculenta) con una proporción 2:8, en el proceso de clarificación del agua de la Ciénaga Grande (Atlántico-Colombia). Para el registro de las características iniciales se efectuó un muestreo simple del agua. Posteriormente, en la etapa de simulación del proceso de clarificación se implementó el test de jarras, donde se observó la reducción de la turbidez que se obtuvo al utilizar el coagulante químico y la mezcla. Para finalizar se concluyó que el sulfato de aluminio logró un porcentaje de remoción del 70% con una dosis de 20 mg/L, mientras que para la mezcla de sulfato de aluminio-Almidón de yuca la eliminación de la turbidez fue de 71,06% con una dosis de 60 mg/L, partiendo de un valor inicial de 69 UNT.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] C. Prakash Khedun, R. Sanchez Flores, H. Rughoonundun, R. Kaiser, “World water supply and use: challenges for the future,” Encyclopedia of Agriculture and Food Systems, vol. 5. Elsevier Ltd., pp. 450–465, 2014, doi: 10.1016/B978-0-444-52512-3.00083-8

[2] S. Choy, K. Prasad, T. Wu, M. Raghunandan, R. Ramanan, “Utilization of plant-based natural coagulants as future alternatives towards sustainable water clarification,” J. Environ. Sci. (China), vol. 26, no. 11, pp. 2178–2189, 2014, doi: 10.1016/j.jes.2014.09.024

[3] C. Ramamurthy, M. Maheswari, N. Selvaganabathy, M. Kumar, V. Sujatha, C. Thirunavukkarasu, “Evaluation of eco-friendly coagulant from Trigonella foenum-graecum seed,” Adv. Biol. Chem., vol. 2, no. 1, pp. 58–63, 2012, doi: 10.4236/abc.2012.21007

[4] S. Ahuja, “Lessons learned from water disasters of the world,” in Evaluating Water Quality to Prevent Future Disasters, 1st ed., S. Ahuja, Ed. Calabash, NC, United States.: Elsevier Inc., 2019, pp. 417–427.

[5] J. Aznar, J. Velasco, L. Belmonte, F. Manzano, “The worldwide research trends on water ecosystem services,” Ecol. Indic., vol. 99, no. December 2018, pp. 310–323, 2019, doi: 10.1016/j.ecolind.2018.12.045

[6] M. Scholz, “Water treatment,” in Wetlands for Water Pollution Control, Secon edit, Salor, Uk, 2016, pp. 9-11.

[7] R. Olivero, Y. Aguas, I. Mercado, D. Casas, L. Montes, “Utilización de Tuna (Opuntia ficus-indica) como coagulante natural en la clarificación de aguas crudas,” Av. Investig. en Ing., vol. 11, no. 1, pp. 70-75, 2014, doi: 10.18041/1794-4953/avances.1.302

[8] L. Guzmán, Á. Villabona, C. Tejada, R. García, “Reducción de la turbidez del agua usando coagulantes naturales: una revisión reduction of water turbidity using natural coagulants: a review,” U.D.C.A Actual. Divulg. Científica, vol. 16, no. 1, pp. 253–262, 2013.

[9] S. Carrasquero, S. Montiel, E. Faría, P. Parra, J. Marín, A. Díaz, “Efectividad de coagulantes obtenidos de residuos de papa (Solanum tuberosum) y plátano (Musa paradisiaca) en la clarificación de aguas,” Rev. Fac. Ciencias Básicas, vol. 13, no. 2, pp. 90–99, 2017, doi: 10.18359/rfcb.1941

[10] A. Sierra, A. Navarro, I. Mercado, A. Flórez, M. Jurado, “Remoción de la turbidez del agua del río Magdalena usando médula de banano,” Rev. UIS Ing., vol. 18, no. 4, pp. 131–138, 2019, doi: 10.18273/revuin.v18n4-2019012

[11] S. Al-Asheh, A. Aidan, “Operating conditions of coagulation-flocculation process for high turbidity ceramic wastewater,” J. Water Environ. Nanotechnol., vol. 2, no. 22, pp. 80–87, 2017, doi: 10.22090/jwent.2017.02.002

[12] V. Onen, P. Beyazyuz, E. Yel, “Removal of turbidity from travertine processing wastewaters by coagulants, flocculants and natural materials,” Mine Water Environ., vol. 37, no. 3, pp. 482–492, 2018, doi: 10.1007/s10230-017-0499-4

[13] S. Shamsnejati, N. Chaibakhsh, A. Pendashteh, S. Hayeripour, “Mucilaginous seed of Ocimum basilicum as a natural coagulant for textile wastewater treatment,” Ind. Crops Prod., vol. 69, pp. 40–47, 2015, doi: 10.1016/j.indcrop.2015.01.045

[14] K. Riaños, M. Meza, I. Mercado, “Clarification of the water of wetlands using a mixture of natural coagulants,” Dyna, vol. 86, no. 209, pp. 73–78, 2019, doi: 10.15446/dyna.v86n209.73687

[15] M. Yusoff, H. Aziz, M. Zamri, F. Suja’, A. Abdullah, N. Basri, “Floc behavior and removal mechanisms of cross-linked Durio zibethinus seed starch as a natural flocculant for landfill leachate coagulation-flocculation treatment,” Waste Manag., vol. 74, pp. 362–372, 2018, doi: 10.1016/j.wasman.2018.01.016

[16] S. Bondy, A. Campbell, “Water quality and brain function,” Int. J. Environ. Res. Public Health, vol. 15, no. 1, 2018, doi: 10.3390/ijerph15010002

[17] S. Choy, K. Prasad, T. Wu, M. Raghunandan, R. Ramanan, “Performance of conventional starches as natural coagulants for turbidity removal,” Ecol. Eng., vol. 94, pp. 352–364, 2016, doi: 10.1016/j.ecoleng.2016.05.082

[18] M. Saleem, R. Bachmann, “A contemporary review on plant-based coagulants for applications in water treatment,” J. Ind. Eng. Chem., vol. 72, pp. 281–297, 2019, doi: 10.1016/j.jiec.2018.12.029

[19] M. Asrafuzzaman, A. Fakhruddin, M. Hossain, “Reduction of turbidity of water using locally available natural coagulants,” ISRN Microbiol., vol. 2011, pp. 1–6, 2011, doi: 10.5402/2011/632189

[20] J. dos Santos, M. Veit, P. Trevisani, G. da Cunha, S. Moreno, M. Fagundes, “Use of different coagulants for cassava processing wastewater treatment,” J. Environ. Chem. Eng., vol. 6, no. 2, pp. 1821–1827, 2018, doi: 10.1016/j.jece.2018.02.039

[21] E. Ogunsona, E. Ojogbo, T. Mekonnen, “Advanced material applications of starch and its derivatives,” Eur. Polym. J., vol. 108, no. September, pp. 570–581, 2018, doi: 10.1016/j.eurpolymj.2018.09.039

[22] Z. Badrus, “Potential of natural flocculant in coagulation-flocculation wastewater treatment Process,” E3S Web Conf., vol. 73, pp. 2–6, 2018, doi: 10.1051/e3sconf/20187305006

[23] S. Ellouzi et al., “Isolation and characterization of starch from industrial fresh pasta by-product and its potential use in sugar-snap cookie making,” J. Food Sci. Technol., vol. 52, no. 9, pp. 5754–5762, 2015, doi: 10.1007/s13197-014-1567-4

[24] C. Yin, “Emerging usage of plant-based coagulants for water and wastewater treatment,” Process Biochem., vol. 45, no. 9, pp. 1437–1444, 2010, doi: 10.1016/j.procbio.2010.05.030

[25] N. Oladoja, “Advances in the quest for substitute for synthetic organic polyelectrolytes as coagulant aid in water and wastewater treatment operations,” Sustain. Chem. Pharm., vol. 3, pp. 47–58, 2016, doi: 10.1016/j.scp.2016.04.001

[26] O. Abiola, “Appraisal of cassava starch as coagulant aid in the alum coagulation of congo red from aqua system,” Int. J. Environ. Pollut. Solut., no. March, 2014, doi: 10.7726/ijeps.2014.1004

[27] F. Zhu, “Recent advances in modifications and applications of sago starch,” Food Hydrocoll., vol. 96, pp. 412–423, 2019, doi: 10.1016/j.foodhyd.2019.05.035

[28] “Cienaga Malambo (Malambo Cienaga) Mapa, Fotos y el tiempo - (Colombia): lago - Latitud:10.8553 and Longitud:-74.7564.” [En línea]. Disponible: http://es.getamap.net/mapas/colombia/atlantico/_malambo_cienaga./.

[29] J. Aristizábal, T. Sánchez, and D. Mejía, “Guía técnica para producción y análisis de almidón de yuca Boletín de servicios agrícolas de la FAO 163,” Roma, 2007.

[30] C. Trujillo et al., “Remoción de turbiedad en agua de una fuente natural mediante coagulación/floculación usando almidón de plátano,” Rev. ION, vol. 27, no. 1, pp. 17–34, 2014.

[31] M. Meza, K. Riaños, I. Mercado, R. Olivero, M. Jurado, “Evaluación del poder coagulante del sulfato de aluminio y las semillas de Moringa oleífera en el proceso de clarificación del agua de la ciénaga de Malambo-Atlántico,” Rev. UIS Ing., vol. 17, no. 2, pp. 95–104, 2018, doi: 10.18273/revuin.v17n2-2018009

[32] Ministerio de la Protección Social y Ministerio de Ambiente Vivienda y Desarrollo Territorial, “Guia que amplia aspectos técnicos para la selección del punto de muestreo para el control y vigilancia de la calidad del agua pra consumo humano sobre la red de distribución,” Bogotá D.C. Colombia, Resolución 2115 del 2007.

[33] W. Jasper, I. Latif, D. Tom-Dery, K. Ochire-Boadu, K. Bernard, “Nutrient composition of Moringa oleifera leaves from two agro ecological zones in Ghana,” Afr. J. Plant Sci., vol. 8, no. 1, pp. 65-71, 2014, doi: 10.5897/AJPS2012.0727.

[34] A. Ali, Y. Tlaiaa, Z. Abdul, R. Nasir, “Sustainable used of natural coagulants aid for enhancing the performance of alum to treat turbid water sustainable used of natural coagulants aid for enhancing the performance of alum to treat turbid water,” IOP Conf. Ser. Mater. Sci. Eng., vol. 518, no. 2, pp. 1–9, 2019, doi: 10.1088/1757-899X/518/2/022014

[35] H. Kashfi et al., “Possibility of utilizing natural coagulants (Trigonella foenum-graecum and Astragalus gossypinus) along with alum for the removal of turbidity,” Int. J. Environ. Sci. Technol., vol. 16, no. 7, pp. 2905–2914, 2019, doi: 10.1007/s13762-017-1635-1

[36] S. Asharuddin et al., “Performance assessment of cassava peel starch and alum as dual coagulant for turbidity removal in dam water,” Rev. Int. Ing. Integr., vol. 10, no. 4, pp. 185–192, 2018, doi: 10.30880/ijie.2018.10.04.029.

[37] H. Camacho, D. Campos, I. Mercado, N. Cubillán, G. Castellar, “Uso de la cáscara de papa (Solanum tuberosum L.) en la clarificación del agua de la Ciénaga de Malambo,” Investig. Innov. Ing., vol. 8, no. 1, pp. 100–111, 2020.

[38] A. Adamu, D. Adie, U. Alka, “A comparative study of the use of cassava species and alum in waste water treatment,” Niger. J. Technol., vol. 33, no. 2, p. 170-175, 2014, doi: 10.4314/njt.v33i2.5

[39] E. Fataei, E. Moghaddam, M. Abdollahzadeh, “Determination of the best coagulant for turbidity and organic matter removal in the coagulation process of ardabil water treatment plant in Iran,” Adv. Environ. Biol., vol. 8, no. 22, pp. 319–324, 2014.

[40] E. Cical, C. Mihali, M. Mecea, A. Dumuţa, T. Dippong, “Considerations on the relative efficacy of aluminum sulphate versus polyaluminum chloride for improving drinking water quality,” Stud. Univ. Babes-Bolyai Chem., vol. 61, no. 2, pp. 225–238, 2016.

[41] R. Lopez, J. Laines, R. Hernandez, M. Aparicio, “Evaluacion de almidones de malanga (Colocasia esculenta) como agentes coadyuvantes en la remocion de turbiedad en procesos de potabilizacion de agua,” Rev. Mex. Ing. Quim., vol. 13, no. 3, pp. 855–863, 2014.

[42] R. Hernandez, R. Solis, J. Laines, “Mezclas con potencial coagulante para clarificar aguas superficiales,” Rev. Int. Contam. Ambient., vol. 28, no. 3, pp. 229–236, 2012.

[43] Ministerio de Vivienda Ciudad y Territorio, “Resolucion 0330 del 2017”, Bogotá D.C. Colombia, 2017.