Vol. 19 Núm. 3 (2020): Revista UIS Ingenierías
Artículos

Potencial de irradiación solar para generar electricidad en el departamento del Putumayo de Colombia

Carlos Luna-Carlosama
Universidad Autónoma de Manizales
Francy Jiménez-García
Universidad Autónoma de Manizales
Ricardo Moreno-Chuquen
Universidad Autónoma de Occidente
Luis Mulcué-Nieto
Universidad Autónoma de Manizales

Publicado 2020-05-29

Palabras clave

  • angstrom,
  • brillo solar,
  • irradiación,
  • potencial efectivo,
  • Colombia,
  • Putumayo
  • ...Más
    Menos

Cómo citar

Luna-Carlosama, C., Jiménez-García, F., Moreno-Chuquen, R., & Mulcué-Nieto, L. (2020). Potencial de irradiación solar para generar electricidad en el departamento del Putumayo de Colombia. Revista UIS Ingenierías, 19(3), 153–162. https://doi.org/10.18273/revuin.v19n3-2020015

Resumen

En Colombia el área de las zonas no interconectadas a la red eléctrica corresponde al 50%, en particular, en el departamento del Putumayo hay un bajo índice de cobertura. Por otro lado, el potencial en energía solar es considerado alto, sin embargo, en regiones como el Putumayo, debido a las diferencias geográficas de sus subregiones, se desconoce con exactitud su valor. En esta investigación se determinó el potencial efectivo para la generación eléctrica solar en el Putumayo considerando restricciones técnicas y geográficas a partir de la información de múltiples bases de datos. Se encontró que el potencial efectivo solar más alto se da en la región Amazónica, y el más bajo en la región Andina. Por otro lado, al evaluar el consumo de energía eléctrica de las regiones, se concluye que se puede satisfacer esta necesidad con sistemas fotovoltaicos al producir energía eléctrica de autogeneración y generación distribuida.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] Banco mundial, “Energía,” 2018. [Online]. Available: http://www.bancomundial.org/es/topic/energy/overview

[2] Superservicios, “Diagnóstico de la prestación del servicio de energía eléctrica 2017 Superintendencia Delegada para Energía y Gas Combustible,” 2017.

[3] UPME, “Consultas Estadisticas SIEL,” Cobertura eléctrica, 2015. [Online]. Available: http://www.siel.gov.co/Inicio/CoberturadelSistemaIntercontecadoNacional/ConsultasEstadisticas/tabid/81/Default.aspx.

[4] IPCC, “Fuentes de energía renovables y mitigación del cambio climatico,” 2011.

[5] IPCC, “Mitigación del cambio climático,” 2014.

[6] UPME, Integración de las energías renovables no convencionales en Colombia. Bogotá D.C., 2015.

[7] IDEAM and UPME, “Atlas de Colombia,” 2018. [Online]. Available: http://www.ideam.gov.co/web/tiempo-y-clima/atlas-de-colombia

[8] R. Quijano, S. Botero, J. Domínguez, “MODERGIS application: Integrated simulation platform to promote and develop renewable sustainable energy plans, Colombian case study,” Renew. Sustain. Energy Rev., vol. 16, no. 7, pp. 5176–5187, 2012, doi: 10.1016/j.rser.2012.05.006

[9] D. Lezcano, S. Botero, H. Velásquez, “Estudio Exergético para identificar y evaluar potencialidades en energías renovables en el territorio Colombia, para planeamiento energético en periodos futuros,” 2011.

[10] Y. Gonzáles, H. Carvajal, “Electrificación sostenible de zonas interconectadas del pacífico Colombiano, por medio de Clusters prototipo de sistemas híbridos solar-eólico-híbridos-diesel optimizados con homer,” Universidad Javeriana, 2016.

[11] Y. Muñoz, J. Guerrero, A. Ospino, “Evaluation of a hybrid system of renewable electricity generation for a remote area of Colombia using homer software,” Tecciencia, vol. 9, no. 17, pp. 45–54, 2014, doi: 10.18180/tecciencia.2014.17.6

[12] A. Ospina, “Análisis del potencial energético solar en la región caribe para el diseño de un sistema fotovoltaico,” Inge CUC, vol. 6, no. 6, 2010.

[13] H. Agudelo, L. Delgado, A. Aristizabal, “Evaluación del potencial de generación fotovoltaica en la ciudad de Quibdó , Chocó,” Elementos, vol. 6, pp. 109–123, 2016, doi: 10.15765/e.v6i6.839

[14] Y. A. Gamboa, A. Hill, “Gestión de sistemas fotovoltáicos para la generación de energía eléctrica en las zonas no interconecctadas (En comunidades menores a 500 habitantes) en el pacífico Colombiano,” Universidad Pontificia Bolivariana, 2016.

[15] L. Delgado, A. J. Aristizábal, “A method for modelling photovoltaic modules under non-standard conditions of solar radiation and ambient temperature in Quibdó , Colombia,” Int. J. Ambient Energy, pp. 1–5, 2017, doi: 10.1080/01430750.2017.1318781

[16] A. Valverde, S. M. Aragon, “Evaluación de la radiación solar en la ciudad de Ibagué mediante la adecuación de un panel fotovoltaico como fuente de adquisición de datos,” Sodebras, vol. 8, no. 85, p. 21, 2013.

[17] J. Hernández, C. A. Arredondo, W. A. Vallejo, “Technical Potential of some Colombian Cities for the Development of Grid Connected PV Systems through Virtual Instrumentation,” in 2014 IEEE 40a Conferencia de Especialistas Fotovoltaicos (PVSC), 2014, pp. 1430–1435, doi: 10.1109 / PVSC.2014.6925185

[18] Y. Muñoz, D. Zafra, V. Acevedo, A. Ospino, “Analysis of energy production with different photovoltaic technologies in the Colombian geography,” in The International Congress of Mechanical Engineering and Agricultural Sciences 2013, 2014, pp. 1–9, doi: 10.1088/1757-899X/59/1/012012

[19] W. Murillo, G. Valois, G. Aragón, “Caracterización de la radiación solar global en Quibdo,años 1998-2000,” Rev. – Univ. Tecnológica del Chocó, vol. 7, no. 15, pp. 6–13, 2002.

[20] S. Córdoba, W. Murillo, R. Palomino, E. Banguero, “Caracterización del brillo solar en quibdó (1979-2003),” Rev. Inst. Univ. Tecnológica del Choco, vol. 22, pp. 12–18, 2005.

[21] O. Guzmán, J. Baldión, O. Simbaqueva, C. Chacón, “Coeficientes para estimar la radiación solar global a partir del brillo solar en la zona cafetera colombiana.,” Cenicafé, vol. 64, no. 1, pp. 60–76, 2013.

[22] A. Angstrom, “Solar and terrestrial radiation,” Sol. Atmos. Radiat., pp. 121–126, 1923, doi: 10.1002/qj.49705021008.

[23] J. . Black, C. . Bonython, J. Prescott, “Solar radiation and the duration of sunshine,” pp. 231–235, 1953, doi: 10.1002/qj.49708034411

[24] J. W. Spencer, “Fourier Series Representation of the Position of the Sun,” Search, vol. 2, no. 5, p. 172, 1971.

[25] K. Gopinathan, “A general formula for computing the coefficients of the correlation connecting global solar radiation to sunshine duration,” Sol. Energy, vol. 41, no. 6, pp. 499–502, 1988, doi: 10.1016/0038-092X(88)90052-7.

[26] B. B. Y. H. Liu, R. C. Jordan, “The Interrelationship and Characteristic Distribution of Direct , Diffuse and Total Solar Radiation,” Sol Energy, 1960.

[27] J. K. Page, “Methods for the estimation of solar energy on vertical and inclined surfaces,” in Solar Energy Conversion, University of Waterloo, Ed. Elsevier, 1979, pp. 37–99, doi: 10.1016/B978-0-08-024744-1.50008-5

[28] L. F. Mulcué Nieto, L. Mora López, “A new model to predict the energy generated by a photovoltaic system connected to the grid in low latitude countries,” Sol. Energy, vol. 107, no. September, pp. 423–442, 2014, doi: 10.1016/j.solener.2014.04.030

[29] M. Collares-Pereira and A. Rabl, “The average distribution of solar radiation correlations between diffuse and hemispherical and between daily and hourly insolation values,” Sol Energy, vol. 22, no. i, pp. 155–164, 1979, doi: 10.1016/0038-092X(79)90100-2

[30] J. E. Hay, “A revised method for determining the direct and diffuse components of the total short ‐ wave radiation,” Atmosphere (Basel)., vol. 14, no. November 2014, pp. 278–287, 1976, doi: 10.1080/00046973.1976.9648423

[31] J. E. Hay, “Calculation of monthly mean solar radiation for horizontal and inclined surfaces,” Sol. Energy, vol. 23, pp. 301–307, 1979, doi: 10.1016/0038-092X(79)90123-3

[32] M. Nieto, “Desarrollo de herramientas para el dimensionado y simulación de sistemas fotovoltaicos en Colombia,” Universidad Internacional de Andalucía, 2014.

[33] IEC, “Photovoltaic system performance monitoring – Guidelines for measurement, data exchange and analysis,” Int. Electrotech. Comm. 61724-1998, 1998.