Propiedades de ingeniería de concretos híbridos activados alcalinamente basados en altos contenidos de ceniza volante: un análisis a largas edades

Resumen

 Este artículo presenta un análisis a largas edades (≤ 4 años) de las propiedades físico-mecánicas y de durabilidad de concretos híbridos basados en la activación alcalina de una ceniza volante (CV) colombiana de alto contenido de inquemados (sin valor comercial). Se evaluó el efecto del tipo de fuente de calcio, utilizando adiciones del 20 % de escoria siderúrgica de alto horno (ESC) y cemento portland (OPC), en comparación con un concreto basado 100 % en CV. Las propiedades evaluadas incluyen la resistencia a la compresión, tracción indirecta, absorción, densidad, porosidad, sorptividad, resistencia a sulfatos, resistencia al ataque ácido, permeabilidad al ion cloruro, susceptibilidad a la carbonatación y resistencia residual a elevadas temperaturas. Los resultados obtenidos demostraron la viabilidad de alcanzar valores de resistencia a la compresión que ascienden a valores entre 40 y 93 MPa a edades de curado de 4 años. En general, se demostró el buen desempeño físico-mecánico y durable de los concretos GCV/ESC y GCV/OPC.

Palabras clave: materiales de activación alcalina, híbridos, ceniza volante, escoria de alto horno, cemento portland, propiedades mecánicas, durabilidad

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] M. Olivia, H. Nikraz, "Optimization of fly ash geopolymer concrete mixtures in a seawater environment", Proceedings of the 24th Biennial Conference of the Concrete Institute of Australia, Sydney, 2009, pp. 188-189.

[2] P. Zhang, K. Wang, Q. Li, J. Wang, Y. Ling, "Fabrication and Engineering Properties of Concretes Based on Geopolymers/Alkali-activated Binders-A Review", J. Clean. Prod., vol. 258, pp. 120896, 2020, doi: 10.1016/j.jclepro.2020.120896

[3] D. E. Angulo-Ramirez, R. M. de Gutiérrez, W. G. Valencia-Saavedra, M. H. F. de Medeiros, J. Hoppe-Filho, "Carbonation of hybrid concrete with high blast furnace slag content and its impact on structural steel corrosion", Mater. Constr., vol. 69, no. 333, pp. 182, 2019, doi: 10.3989/mc.2019.05418

[4] W. Valencia-Saavedra, D. E. Angulo, R. M. de Gutiérrez, "Fly Ash Slag Geopolymer Concrete: Resistance to Sodium and Magnesium Sulfate Attack", J. Mater. Civ. Eng., vol. 28, no. 12, pp. 04016148, 2016, doi: 10.1061/(ASCE)MT.1943-5533.0001618

[5] W. G. Valencia-Saavedra, R. M. de Gutiérrez, "Performance of geopolymer concrete composed of fly ash after exposure to elevated temperatures", Constr. Build. Mater., vol. 154, pp. 229-235, 2017, doi: 10.1016/j.conbuildmat.2017.07.208

[6] W. G. Valencia-Saavedra, R. M. de Gutiérrez, F. Puertas, "Performance of FA-based geopolymer concretes exposed to acetic and sulfuric acids", Constr. Build. Mater., vol. 257, pp. 119503, 2020, doi: 10.1016/j.conbuildmat.2020.119503

[7] J. M. Mejía, E. D. Rodríguez, R. M. de Gutiérrez, "Utilización potencial de una ceniza volante de baja calidad como fuente de aluminosilicatos en la producción de geopolímeros", Ing. Univ., vol. 18, no. 2, pp. 309-327, 2014, doi: 10.11144/Javeriana.IYU18-2.upcv

[8] E. I. Diaz, E. N. Allouche, "Recycling of Fly Ash into Geopolymer Concrete: Creation of a Database", en 2010 IEEE Green Technologies Conference, 2010, pp. 1-7, doi: 10.1109/GREEN.2010.5453790

[9] A. M. Fernandez-Jimenez, A. Palomo, C. Lopez-Hombrados, "Engineering properties of alkali-activated fly ash concrete", ACI Mater. J., vol. 103, no. 2, pp. 106-112, 2006.

[10] D. Hardjito, S. E. Wallah, D. M. J. Sumajouw, B. V. Rangan, "Introducing fly ash-based geopolymer concrete: manufacture and engineering properties", en 30th Conference on our World in Concrete and Structures, 2005, pp. 271-278.

[11] A. F. Jiménez, A. P. Sánchez, "Factores que afectan al desarrollo inicial de resistencias a compresión en hormigones de ceniza volante activados alcalinamente (sin OPC)", Mater. Constr., vol. 57, no. 287, pp. 7-22, 2007.

[12] W. Prachasaree, S. Limkatanyu, A. Hawa, A. Samakrattakit, "Development of Equivalent Stress Block Parameters for Fly-Ash-Based Geopolymer Concrete", Arab. J. Sci. Eng., vol. 39, no. 12, pp. 8549-8558, 2014, doi: 10.1007/s13369-014-1447-2

[13] G. S. Ryu, Y. B. Lee, K. T. Koh, Y. S. Chung, "The mechanical properties of fly ash-based geopolymer concrete with alkaline activators", Constr. Build. Mater., vol. 47, pp. 409-418, 2013, doi: 10.1016/j.conbuildmat.2013.05.069

[14] M. Šejnoha, M. Brouček, E. Novotná, Z. Keršner, D. Lehký, P. Frantı́k, "Fracture properties of cement and alkali activated fly ash based concrete with application to segmental tunnel lining", Adv. Eng. Softw., vol. 62-63, pp. 61-71, 2013, doi: 10.1016/j.advengsoft.2013.04.009

[15] B. Singh, G. Ishwarya, M. Gupta, S. K. Bhattacharyya, "Geopolymer concrete: A review of some recent developments", Constr. Build. Mater., vol. 85, pp. 78-90, 2015, doi: 10.1016/j.conbuildmat.2015.03.036

[16] D. K. Sinha, A. Kumar, S. Kumar, "Development of Geopolymer Concrete from Fly Ash and Bottom Ash Mixture", Trans. Indian Ceram. Soc., vol. 73, no. 2, pp. 143-148, 2014, doi: 10.1080/0371750X.2014.922427

[17] M. Talha J, O. Kayali, A. Khennane, J. Black, "A mix design procedure for low calcium alkali activated fly ash-based concretes", Constr. Build. Mater., vol. 79, pp. 301-310, 2015, doi: 10.1016/j.conbuildmat.2015.01.048

[18] S. E. Wallah, "Drying Shrinkage of Heat-Cured Fly Ash-Based Geopolymer Concrete", Mod. Appl. Sci., vol. 3, no. 12, pp. 14, 2009, doi: 10.5539/mas.v3n12p14

[19] W. Al-Kutti, M. Nasir, M. A. M. Johari, A. S. Islam, A. A. Manda, N. I. Blaisi, "An overview and experimental study on hybrid binders containing date palm ash, fly ash, OPC and activator composites", Constr. Build. Mater., vol. 159, pp. 567-577, 2018, doi: 10.1016/j.conbuildmat.2017.11.017

[20] M. Dong, M. Elchalakani, A. Karrech, "Curing conditions of alkali-activated fly ash and slag mortar", J. Mater. Civ. Eng., vol. 32, no. 6, pp. 04020122, 2020, doi: 10.1061/(ASCE)MT.1943-5533.0003233

[21] G. Fang, W. K. Ho, W. Tu, M. Zhang, "Workability and mechanical properties of alkali-activated fly ash-slag concrete cured at ambient temperature", Constr. Build. Mater., vol. 172, pp. 476-487, 2018, doi: 10.1016/j.conbuildmat.2018.04.008

[22] G. F. Huseien, A. R. M. Sam, K. W. Shah, A. M. A. Budiea, J. Mirza, "Utilizing spend garnets as sand replacement in alkali-activated mortars containing fly ash and GBFS", Constr. Build. Mater., vol. 225, pp. 132-145, 2019, doi: 10.1016/j.conbuildmat.2019.07.149

[23] N. K. Lee, H.-K. Lee, "Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature", Constr. Build. Mater., vol. 47, pp. 1201-1209, 2013, doi: 10.1016/j.conbuildmat.2013.05.107

[24] P. Nath, P. K. Sarker, "Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature", Cem. Concr. Compos., vol. 55, pp. 205-214, 2015, doi: 10.1016/j.cemconcomp.2014.08.008

[25] X. Ouyang, Y. Ma, Z. Liu, J. Liang, G. Ye, "Effect of the Sodium Silicate Modulus and Slag Content on Fresh and Hardened Properties of Alkali-Activated Fly Ash/Slag", Minerals, vol. 10, no. 1, pp. 15, 2020, doi: 10.3390/min10010015

[26] W. Valencia, "Durabilidad corrosión de geoconcretos estructurales basados en ceniza volante", tesis de doctorado, Universidad del Valle, Cali, Colombia, 2019.

[27] W. Valencia-Saavedra, R. Mejía de Gutiérrez, M. Gordillo, "Geopolymeric concretes based on fly ash with high unburned content", Constr. Build. Mater., vol. 165, pp. 697-706, 2018, doi: 10.1016/j.conbuildmat.2018.01.071

[28] M. N. Qureshi, S. Ghosh, "Effect of Silicate Content on the Properties of Alkali-Activated Blast Furnace Slag Paste", Arab. J. Sci. Eng., vol. 39, no. 8, pp. 5905-5916, 2014, doi: 10.1007/s13369-014-1172-x

[29] S. H. Sanni, R. B. Khadiranaikar, "Performance of alkaline solutions on grades of geopolymer concrete", Int. J. Res. Eng. Technol., vol. 2, no. 11, pp. 366-371, 2013.

[30] A. Sathonsaowaphak, P. Chindaprasirt, K. Pimraksa, "Workability and strength of lignite bottom ash geopolymer mortar", J. Hazard. Mater., vol. 168, no. 1, pp. 44-50, 2009, doi: 10.1016/j.jhazmat.2009.01.120

[31] A. Palomo, M. W. Grutzeck, M. T. Blanco, "Alkali-activated fly ashes: A cement for the future", Cem. Concr. Res., vol. 29, no. 8, pp. 1323-1329, 1999, doi: 10.1016/S0008-8846(98)00243-9

[32] K. Somna, C. Jaturapitakkul, P. Kajitvichyanukul, P. Chindaprasirt, "NaOH-activated ground fly ash geopolymer cured at ambient temperature", Fuel, vol. 90, no. 6, pp. 2118-2124, 2011, doi: 10.1016/j.fuel.2011.01.018

[33] J. G. S. Van Jaarsveld, J. S. J. van Deventer, G. C. Lukey, "The effect of composition and temperature on the properties of fly ash- and kaolinite-based geopolymers", Chem. Eng. J., vol. 89, no. 1-3, pp. 63-73, 2002, doi: 10.1016/S1385-8947(02)00025-6

[34] X. Y. Zhuang et al., "Fly ash-based geopolymer: clean production, properties and applications", J. Clean. Prod., vol. 125, pp. 253-267, 2016, doi: 10.1016/j.jclepro.2016.03.019

[35] M. Schmücker, K. J. D. MacKenzie, "Microstructure of sodium polysialate siloxo geopolymer", Ceram. Int., vol. 31, no. 3, pp. 433-437, 2005, doi: 10.1016/j.ceramint.2004.06.006

[36] J. Temuujin, A. van Riessen, "Effect of fly ash preliminary calcination on the properties of geopolymer", J. Hazard. Mater., vol. 164, no. 2-3, pp. 634-639, 2009, doi: 10.1016/j.jhazmat.2008.08.065

[37] K. Komnitsas, D. Zaharaki, V. Perdikatsis, "Geopolymerisation of low calcium ferronickel slags", J. Mater. Sci., vol. 42, no. 9, pp. 3073-3082, 2007, doi: 10.1007/s10853-006-0529-2

[38] S. Kumar, R. Kumar, S. P. Mehrotra, "Influence of granulated blast furnace slag on the reaction, structure and properties of fly ash based geopolymer", J. Mater. Sci., vol. 45, no. 3, pp. 607-615, 2010, doi: 10.1007/s10853-009-3934-5

[39] R. Firdous, T. Hirsch, D. Klimm, B. Lothenbach, D. Stephan, " Reaction of calcium carbonate minerals in sodium silicate solution and its role in alkali-activated systems", Minerals Engineering, vol. 165, 2021, doi: 10.1016/j.mineng.2021.106849

[40] S. Pangdaeng, T. Phoo-ngernkham, V. Sata, P. Chindaprasirt, "Influence of curing conditions on properties of high calcium fly ash geopolymer containing Portland cement as additive", Mater. Des., vol. 53, pp. 269-274, 2014, doi: 10.1016/j.matdes.2013.07.018

[41] T. Phoo N, P. Chindaprasirt, V. Sata, T. Sinsiri, "High calcium fly ash geopolymer containing diatomite as additive", IJEMS, vol. 20, no. 4, pp. 310-318, 2013.

[42] J. Temuujin, A. van Riessen, R. Williams, "Influence of calcium compounds on the mechanical properties of fly ash geopolymer pastes", J. Hazard. Mater., vol. 167, no. 1-3, pp. 82-88, 2009, doi: 10.1016/j.jhazmat.2008.12.121

[43] H. Xu, G. C. Lukey, J. S. J. van Deventer, "The Activation of Class C-, Class F-Fly Ash and Blast Furnace Slag Using Geopolymerisation", Spec. Publ., vol. 221, pp. 797-820, 2004, doi: 10.14359/13292

[44] C. K. Yip, G. C. Lukey, J. L. Provis, J. S. J. van Deventer, "Effect of calcium silicate sources on geopolymerisation", Cem. Concr. Res., vol. 38, no. 4, pp. 554-564, 2008, doi: 10.1016/j.cemconres.2007.11.001

[45] C. K. B. Yip, "The role of calcium in geopolymerisation", tesis doctoral, University of Melbourne, 2004.

[46] P. S. Deb, P. Nath, P. K. Sarker, "The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature", Mater. Des. 1980-2015, vol. 62, pp. 32-39, 2014, doi: 10.1016/j.matdes.2014.05.001

[47] A. Wardhono, D. Law, T. Molyneaux, "The mechanical properties of fly ash geopolymer in long term performance", en CIC 2014, 2014, pp. 1-10.

[48] H. M. Giasuddin, J. G. Sanjayan, P. G. Ranjith, "Strength of geopolymer cured in saline water in ambient conditions", Fuel, vol. 107, pp. 34-39, 2013, doi: 10.1016/j.fuel.2013.01.035

[49] R. M. Edmeades, P. C. Hewlett, P. C. Hewlett, Lea’s Chemistry of Cement and Concrete. London: Arnold, 1998.

[50] S. Bernal, M. Rodriguez, "Durabilidad y propiedades mecánicas de concretos de escoria siderurgica activada alcalinamente", tesis de grado, Universidad del Valle, 2004.

[51] S. Izquierdo, "Durabilidad de cementos adicionados con un residuo del proceso de craqueo catalitico frente a diversos ambientes agresivos", tesis de grado, Universidad del Valle, 2015.

[52] R. Mejía R, C. Rodríguez, E. Rodríguez, J. Torres, y S. Delvasto, "Concreto adicionado con metacaolín: Comportamiento a carbonatación y cloruros", Rev. Fac. Ing. Univ. Antioquia, vol. 48, pp. 55-64, 2009.

[53] S. A. Bernal, R. M. de Gutiérrez, F. Ruiz, H. Quiñones, J. L. Provis, "High-temperature performance of mortars and concretes based on alkali-activated slag/metakaolin blends", Mater. Constr., vol. 62, no. 308, pp. 471-488, 2012, doi: 10.3989/mc.2012.01712

[54] S. A. Bernal, R. Mejía de Gutiérrez, J. L. Provis, "Engineering and durability properties of concretes based on alkali-activated granulated blast furnace slag/metakaolin blends", Constr. Build. Mater., vol. 33, pp. 99-108, 2012, doi: 10.1016/j.conbuildmat.2012.01.017

[55] S. Al-Otaibi, "Durability of concrete incorporating GGBS activated by water-glass", Constr. Build. Mater., vol. 22, no. 10, pp. 2059-2067, 2008, doi: 10.1016/j.conbuildmat.2007.07.023

[56] J. L. Provis, R. J. Myers, C. E. White, V. Rose, J. S. J. van Deventer, "X-ray microtomography shows pore structure and tortuosity in alkali-activated binders", Cem. Concr. Res., vol. 42, no. 6, pp. 855-864, 2012, doi: 10.1016/j.cemconres.2012.03.004

[57] F. Pacheco T, J. Castro-Gomes, S. Jalali, "Investigations about the effect of aggregates on strength and microstructure of geopolymeric mine waste mud binders", Cem. Concr. Res., vol. 37, no. 6, pp. 933-941, 2007, doi: 10.1016/j.cemconres.2007.02.006

[58] T. Bakharev, "Durability of geopolymer materials in sodium and magnesium sulfate solutions", Cem. Concr. Res., vol. 35, no. 6, pp. 1233-1246, 2005, doi: 10.1016/j.cemconres.2004.09.002

[59] Z. Baščarević, M. Komljenović, Z. Miladinović, V. Nikolić, N. Marjanović, R. Petrović, "Impact of sodium sulfate solution on mechanical properties and structure of fly ash based geopolymers", Mater. Struct., vol. 48, no. 3, pp. 683-697, 2015, doi: 10.1617/s11527-014-0325-4

[60] I. Ismail, S. A. Bernal, J. L. Provis, S. Hamdan, J. S. J. van Deventer, "Microstructural changes in alkali activated fly ash/slag geopolymers with sulfate exposure", Mater. Struct., vol. 46, no. 3, pp. 361-373, 2012, doi: 10.1617/s11527-012-9906-2

[61] M. Komljenović, Z. Baščarević, N. Marjanović, V. Nikolić, "External sulfate attack on alkali-activated slag", Constr. Build. Mater., vol. 49, pp. 31-39, 2013, doi: 10.1016/j.conbuildmat.2013.08.013

[62] F. Puertas, M. Palacios, T. Vázquez, "Carbonation process of alkali-activated slag mortars", J. Mater. Sci., vol. 41, no. 10, pp. 3071-3082, 2006, doi: 10.1007/s10853-005-1821-2

[63] T. Bakharev, "Resistance of geopolymer materials to acid attack", Cem. Concr. Res., vol. 35, no. 4, pp. 658-670, 2005, doi: 10.1016/j.cemconres.2004.06.005

[64] T. Bakharev, J. G. Sanjayan, Y.-B. Cheng, "Resistance of alkali-activated slag concrete to acid attack", Cem. Concr. Res., vol. 33, no. 10, pp. 1607-1611, 2003, doi: 10.1016/S0008-8846(03)00125-X

[65] S. A. Bernal, E. D. Rodríguez, R. M. de Gutiérrez, J. L. Provis, "Performance of alkali-activated slag mortars exposed to acids", J. Sustain. Cem.-Based Mater., vol. 1, no. 3, pp. 138-151, 2012, doi: 10.1080/21650373.2012.747235

[66] V. Sata, A. Sathonsaowaphak, P. Chindaprasirt, "Resistance of lignite bottom ash geopolymer mortar to sulfate and sulfuric acid attack", Cem. Concr. Compos., vol. 34, no. 5, pp. 700-708, 2012, doi: 10.1016/j.cemconcomp.2012.01.010

[67] A. M. Rashad, "Potential use of phosphogypsum in alkali-activated fly ash under the effects of elevated temperatures and thermal shock cycles", J. Clean. Prod., vol. 87, pp. 717-725, 2015, doi: 10.1016/j.jclepro.2014.09.080

[68] A. M. Rashad, "An investigation of high-volume fly ash concrete blended with slag subjected to elevated temperatures", J. Clean. Prod., vol. 93, pp. 47-55, 2015, doi: 10.1016/j.jclepro.2015.01.031

[69] A. M. Rashad, D. M. Sadek, H. A. Hassan, "An investigation on blast-furnace stag as fine aggregate in alkali-activated slag mortars subjected to elevated temperatures", J. Clean. Prod., vol. 112, no. 1, pp. 1086-1096, 2015, doi: 10.1016/j.jclepro.2015.07.127
Publicado
2021-05-10