Vol. 22 Núm. 2 (2023): Revista UIS Ingenierías
Artículos

Revisión sistemática del comportamiento convencional y reológico del biocompuesto asfalto-biomasas producidas

Sócrates Pedro Muñoz Pérez
Universidad Señor de Sipan
María Magaly Morante-Santamaría
Universidad Señor de Sipan
Helmer Félix Huamán-Manayay
Universidad Señor de Sipan

Publicado 2023-03-21

Palabras clave

  • asfalto,
  • bioasfalto,
  • biomasa,
  • propiedades convencionales,
  • propiedades reológicas

Cómo citar

Muñoz Pérez, S. P., Morante-Santamaría, M. M. ., & Huamán-Manayay, H. F. . (2023). Revisión sistemática del comportamiento convencional y reológico del biocompuesto asfalto-biomasas producidas. Revista UIS Ingenierías, 22(2), 15–28. https://doi.org/10.18273/revuin.v22n2-2023002

Resumen

 

La ingeniería de pavimentos, busca con ahínco materiales no petrolíficos como sustituyentes/mejoradores del asfalto. La producción de bioasfalto con biomasa es la técnica más usual con beneficios económicos, sociales y medioambientales. Este documento tiene como objetivo realizar una revisión literaria del mejoramiento del asfalto con biomasa en subproductos de biocarbón o bioaceite. Se efectuó una revisión de 80 artículos científicos, los cuales estudiaron las propiedades convencionales y reológicas del asfalto con porcentajes óptimos de adición de biomodificadores, considerándolos como nuevas tecnologías en las construcciones viales. Los resultados muestran que la dosis y tipo del biomaterial influye mucho como modificador, dado que el rendimiento del bioasfalto a base de biomasa garantiza reacciones positivas con una mínina adición de 1% de aceite de palma hasta 100% de ceniza de madera como máximo. En conclusión, a mayor dosis de biomodificador a altas temperaturas mayor es la mejora en la viscosidad, estabilidad, grado de penetración, punto de reblandecimiento, resistencia a la tracción indirecta, módulo de resistencia, resistencia a la deformación, resistencia a la fatiga, resistencia al deslizamiento y resistencia a la humedad del asfalto, además de tener mejores condiciones de envejecimiento oxidativo, pues generalmente el ligante asfáltico es compatible con la mayoría de los biomateriales, siendo viable como fuente de energía renovable, sostenible y de calidad.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. S. M. Saeed et al., “Optimization of rubber seed oil content as bio-oil rejuvenator and total water content for cold recycled asphalt mixtures using response surface methodology,” Case Stud. Constr. Mater., vol. 15, p. e00561, 2021, doi: https://doi.org/10.1016/j.cscm.2021.e00561
  2. A. Samieadel, K. Schimmel, and E. H. Fini, “Comparative life cycle assessment (LCA) of bio-modified binder and conventional asphalt binder,” Clean Technol. Environ. Policy, vol. 20, no. 1, pp. 191–200, Jan. 2018, doi: https://doi.org/10.1007/s10098-017-1467-1
  3. J. Suárez-Macías, J. M. Terrones-Saeta, F. J. Iglesias-Godino, F. A. Corpas-Iglesias, “Development of Cold In-Place Recycling with Bitumen Emulsion and Biomass Bottom Ash,” Crystals, vol. 11, no. 4, p. 384, Apr. 2021, doi: https://doi.org/10.3390/cryst11040384
  4. A. M. Al-Sabaeei, M. B. Napiah, M. H. Sutanto, S. Rahmad, N. I. M. Yusoff, and W. S. Alaloul, “Determination of rheological properties of bio-asphalt binders through experimental and multilayer feed-forward neural network methods,” Ain Shams Eng. J., vol. 12, no. 4, pp. 3485–3493, Dec. 2021, doi: https://doi.org/10.1016/j.asej.2021.04.003
  5. F. Bühler, T. V. Nguyen, B. Elmegaard, “Sustainable production of asphalt using biomass as primary process fuel,” 22nd Int. Congr. Chem. Process Eng. CHISA 2016 19th Conf. Process Integr. Model. Optim. Energy Sav. Pollut. Reduction, PRES 2016, vol. 2, pp. 1063–1064, 2016.
  6. L. V. Espinosa et al., “Multi-scale study of bio-binder mixtures as surface layer: Laboratory evaluation and field application and monitoring,” Constr. Build. Mater., vol. 287, p. 122982, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.122982
  7. Z. Elahi et al., “Waste Cooking Oil as a Sustainable Bio Modifier for Asphalt Modification: A Review,” Sustainability, vol. 13, no. 20, p. 11506, Oct. 2021, doi: https://doi.org/10.3390/su132011506
  8. J. Ren, G. Zang, and Y. Xu, “Formula and Pavement Properties of a Composite Modified Bioasphalt Binder Considering Performance and Economy,” J. Mater. Civ. Eng., vol. 31, no. 10, Oct. 2019, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002888
  9. J. Hui, T. Wang, R. Jiang, B. Zhu, and X. Wang, “Research on Polymer Modifiers of Bio-asphalt Synthesized by Controlled/Living Radical Polymerization,” IOP Conf. Ser. Mater. Sci. Eng., vol. 371, p. 012058, 2018, doi: https://doi.org/10.1088/1757-899X/371/1/012058
  10. Y. Fang, Z. Zhang, J. Yang, and X. Li, “Comprehensive review on the application of bio-rejuvenator in the regeneration of waste asphalt materials,” Constr. Build. Mater., vol. 295, p. 123631, Aug. 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.123631
  11. H. Kumar Behera, D. Giri, and S. Sekhar Das, “Modification of Bitumen Using Sustainable Materials for Pavement Design,” IOP Conf. Ser. Mater. Sci. Eng., vol. 970, no. 1, p. 012022, Nov. 2020, doi: https://doi.org/10.1088/1757-899X/970/1/012022
  12. M. Zadshir, D. J. Oldham, S. Hosseinnezhad, E. H. Fini, “Investigating bio-rejuvenation mechanisms in asphalt binder via laboratory experiments and molecular dynamics simulation,” Constr. Build. Mater., vol. 190, pp. 392–402, Nov. 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.09.137
  13. S. Hosseinnezhad, A. M. Hung, M. Mousavi, B. K. Sharma, and E. Fini, “Resistance Mechanisms of Biomodified Binders against Ultraviolet Exposure,” ACS Sustain. Chem. Eng., vol. 8, no. 6, pp. 2390–2398, 2020, doi: https://doi.org/10.1021/acssuschemeng.9b05490
  14. K. R. Usman, M. R. Hainin, M. K. I. Mohd Satar, M. N. Mohd Warid, S. N. N. Kamarudin, and S. Abdulrahman, “Palm oil fuel ash application in cold mix dense-graded bituminous mixture,” Constr. Build. Mater., vol. 287, p. 123033, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.123033
  15. X. Zhang, J. Zhu, C. Wu, Q. Wu, K. Liu, K. Jiang, “Preparation and Properties of Wood Tar-based Rejuvenated Asphalt,” Materials (Basel)., vol. 13, no. 5, p. 1123, Mar. 2020, doi: https://doi.org/10.3390/ma13051123
  16. M. Dahim, “Crude Oil Fly Ash Waste for Road Pavement Application,” IOP Conf. Ser. Earth Environ. Sci., vol. 801, no. 1, p. 012006, 2021, doi: https://doi.org/10.1088/1755-1315/801/1/012006
  17. C. Higuera-Sandoval, X. V. Camargo-Amaya, E. A. Suárez-Molano “Effect of Aging on the Properties of Asphalt and Asphalt Mixtures,” Ing. y Univ., vol. 19, pp. 89–103, 2015, doi: https://doi.org/10.11144/Javeriana.iyu19-2.eapa
  18. S. A. Tahami, M. Arabani, and A. Foroutan Mirhosseini, “Usage of two biomass ashes as filler in hot mix asphalt,” Constr. Build. Mater., vol. 170, pp. 547–556, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.03.102
  19. M. S. Lebedev, N. I. Kozhukhova, and I. L. Chulkova, “Effect of phase and size characteristics of fly ash from power station on properties of bitumen composites,” IOP Conf. Ser. Mater. Sci. Eng., vol. 222, p. 012005, 2017, doi: https://doi.org/10.1088/1757-899X/222/1/012005
  20. E. Chailleux, M. AUDO, S. Goyer, C. Queffelec, and O. yazoghli, Advances in the development of alternative binders from biomass for the production of biosourced road binders. In Huang, Di Benedetto (Eds) Advances in Asphalt Materials, Road and Pavement Construction. 2015.
  21. Y. Ding, B. Shan, X. Cao, L. Yugui, M. Huang, B. Tang, “Development of bio oil and bio asphalt by hydrothermal liquefaction using lignocellulose,” Journal of Cleaner Production, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.125586
  22. S. Dimter, M. Šimun, M. Zagvozda, T. Rukavina, “Laboratory Evaluation of the Properties of Asphalt Mixture with Wood Ash Filler,” Materials (Basel)., vol. 14, no. 3, p. 575, 2021, doi: https://doi.org/10.3390/ma14030575
  23. A. Kumar, R. Choudhary, R. Narzari, R. Kataki, and S. K. Shukla, “Evaluation of bio-asphalt binders modified with biochar: a pyrolysis by-product of Mesua ferrea seed cover waste,” Cogent Eng., vol. 5, no. 1, p. 1548534, 2018, doi: https://doi.org/10.1080/23311916.2018.1548534
  24. Y. Lei et al., “Evaluation of the effect of bio-oil on the high-temperature performance of rubber modified asphalt,” Constr. Build. Mater., vol. 191, pp. 692–701, Dec. 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.10.064
  25. H. Wang, Z. Ma, X. Chen, M. R. Mohd Hasan, “Preparation process of bio-oil and bio-asphalt, their performance, and the application of bio-asphalt: A comprehensive review,” J. Traffic Transp. Eng., vol. 7, no. 2, pp. 137–151, 2020, doi: https://doi.org/10.1016/j.jtte.2020.03.002
  26. D. Paul, M. Suresh, and M. Pal, “Utilization of fly ash and glass powder as fillers in steel slag asphalt mixtures,” Case Stud. Constr. Mater., vol. 15, p. e00672, 2021, doi: https://doi.org/10.1016/j.cscm.2021.e00672
  27. H. Choo, N. N. Yeboah, and S. E. Burns, “Small to intermediate strain properties of fly ashes with various carbon and biomass contents,” Can. Geotech. J., vol. 53, no. 1, pp. 35–48, 2016, doi: https://doi.org/10.1139/cgj-2014-0069
  28. S. Mansor, S. Haron, M. I. Joohari, M. Razali, R. Ramli, “The Effect of Utilizing Fly Ash and Bottom Ash as a Replacement of Mineral Filler in Porous Asphalt Mixtures,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1144, no. 1, p. 012086, May 2021, doi: https://doi.org/10.1088/1757-899X/1144/1/012086
  29. M. S. S. Lima et al., “Environmental potentials of asphalt mixtures fabricated with red mud and fly ash,” Road Mater. Pavement Des., vol. 22, no. sup1, pp. S690–S701, 2021, doi: https://doi.org/10.1080/14680629.2021.1900899
  30. B. C. Amoni et al., “Effect of coal fly ash treatments on synthesis of high-quality zeolite A as a potential additive for warm mix asphalt,” Mater. Chem. Phys., vol. 275, p. 125197, 2022, doi: https://doi.org/10.1016/j.matchemphys.2021.125197
  31. W. Dong, F. Ma, C. Li, Z. Fu, Y. Huang, J. Liu, “Evaluation of Anti-Aging Performance of Biochar Modified Asphalt Binder,” Coatings, vol. 10, no. 11, p. 1037, Oct. 2020, doi: https://doi.org/10.3390/coatings10111037
  32. T. P. da Costa, P. Quinteiro, L. A. C. Tarelho, L. Arroja, and A. C. Dias, “Environmental assessment of valorisation alternatives for woody biomass ash in construction materials,” Resour. Conserv. Recycl., vol. 148, pp. 67–79, 2019, doi: https://doi.org/10.1016/j.resconrec.2019.04.022
  33. X. Zhou et al., “Effects of pyrolysis parameters on physicochemical properties of biochar and bio-oil and application in asphalt,” Sci. Total Environ., vol. 780, p. 146448, 2021, doi: https://doi.org/10.1016/j.scitotenv.2021.146448
  34. A. V. Rouly Sihombing, “Development of resilient modulus model proposed for bio-asphalt as modifier in asphalt concrete containing reclaimed asphalt pavement,” Int. J. Geomate, vol. 19, no. 71, 2020, doi: https://doi.org/10.21660/2020.71.68349
  35. Z. A. Jattak, N. A. Hassan, M. K. I. Mohd Satar, “Moisture susceptibility and environmental impact of warm mix asphalt containing bottom ash,” Case Stud. Constr. Mater., vol. 15, p. e00636, 2021, doi: https://doi.org/10.1016/j.cscm.2021.e00636
  36. B. Yang et al., “Environmental impact of solid waste filler in porous asphalt mixture,” Constr. Build. Mater., vol. 303, p. 124447, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.124447
  37. A. Setyawan, B. Widiharjo, Djumari, “Selecting the Best Materials Compositions of Resin Based Bioasphalt,” IOP Conf. Ser. Earth Environ. Sci., vol. 75, p. 012019, Jul. 2017, doi: 10.1088/1755-1315/75/1/012019.
  38. J. Plachý, J. Vysoká, R. Vejmelka, “Influence of Amount of Filler on Thermal Resistance of Bitumen Sheets,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1066, no. 1, p. 012009, 2021, doi: https://doi.org/10.1088/1757-899X/1066/1/012009
  39. S. Ren et al., “Multi-scale characterization of lignin modified bitumen using experimental and molecular dynamics simulation methods,” Constr. Build. Mater., vol. 287, p. 123058, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.123058
  40. M. Amrani et al., “Feasibility of using phosphate wastes for enhancing high-temperature rheological characteristics of asphalt binder,” J. Mater. Cycles Waste Manag., vol. 22, no. 5, pp. 1407–1417, Sep. 2020, doi: https://doi.org/10.1007/s10163-020-01026-1
  41. S. Abbasalizadeh Boura and S. Hesami, “Laboratory evaluation of the performance of asphalt mixtures containing biomass fillers,” Road Mater. Pavement Des., vol. 21, no. 7, pp. 2040–2053, Oct. 2020, doi: https://doi.org/10.1080/14680629.2019.1572528
  42. E. Remišová and M. Holý, “Changes of Properties of Bitumen Binders by Additives Application,” IOP Conf. Ser. Mater. Sci. Eng., vol. 245, p. 032003, Oct. 2017, doi: https://doi.org/10.1088/1757-899X/245/3/032003
  43. F. de Araújo, I. S. V. da Silva, D. Pasquini, “Application of polyester derived from biomass in petroleum asphalt cement,” Polímeros, vol. 27, no. 2, pp. 136–140, 2017, doi: https://doi.org/10.1590/0104-1428.2401
  44. Chaira and Veranita, “The Effect of Combining Coal Fly Ash and Lokan Shells As Filler Towards The Mixture Of Asphalt Concrete Wearing Course,” J. Phys. Conf. Ser., vol. 1625, no. 1, p. 012033, 2020, doi: https://doi.org/10.1088/1742-6596/1625/1/012033
  45. H. H. Joni and H. H. Zghair, “Properties of modified asphalt mixtures with additives of fillers materials,” IOP Conf. Ser. Mater. Sci. Eng., vol. 737, no. 1, p. 012120, 2020, doi: https://doi.org/10.1088/1757-899X/737/1/012120
  46. Y. Bi, F. Jakarni, “Evaluating properties of wood ash modified asphalt mixtures,” IOP Conf. Ser. Mater. Sci. Eng., vol. 512, p. 012004, 2019, doi: https://doi.org/10.1088/1757-899X/512/1/012004
  47. H. A. Rondón Quintana, O. I. León Vergara, W. D. Fernández Gómez, “Behavior of a warm mix asphalt made in an asphalt plant,” Ing. y Desarro., vol. 35, no. 1, pp. 153–173, 2017, doi: https://doi.org/10.14482/inde.35.1.8947
  48. A. Loaiza, E. Garcia, and H. A. Colorado, “Evaluation of asphalt binder blended with coconut coir dust and residual coconut fibers for structural applications,” Rev. la construcción, vol. 17, no. 3, pp. 542–554, 2019, doi: https://doi.org/10.7764/RDLC.17.3.542
  49. M. Zahoor, S. Nizamuddin, S. Madapusi, F. Giustozzi, “Recycling asphalt using waste bio-oil: A review of the production processes, properties and future perspectives,” Process Saf. Environ. Prot., vol. 147, pp. 1135–1159, 2021, doi: https://doi.org/10.1016/j.psep.2021.01.032
  50. P. Procházka et al., “Availability and Applicability of Wood and Crop Residues for the Production of Wood Composites,” Forests, vol. 12, no. 5, p. 641, 2021, doi: https://doi.org/10.3390/f12050641
  51. Z. Y. Mahssin et al., “Converting Biomass into Bio-Asphalt – A Review,” IOP Conf. Ser. Earth Environ. Sci., vol. 682, no. 1, p. 012066, 2021, doi: https://doi.org/10.1088/1755-1315/682/1/012066
  52. R. Mistry and T. K. Roy, “Effect of using fly ash as alternative filler in hot mix asphalt,” Perspect. Sci., vol. 8, pp. 307–309, 2016, doi: https://doi.org/10.1016/j.pisc.2016.04.061
  53. R. Veropalumbo, N. Viscione, A. Formisano, “Hot mix asphalt with fly ashes for dense-graded surface layers of rural roads,” WIT Transactions on Ecology and the Environment, pp. 93–105, 2018, doi: https://doi.org/10.2495/EID180091
  54. D. M. Ayala Valderrama, J. A. Gómez Cuaspud, “Characterization of fly ash, slag and glass hull for the obtaining of vitreous materials,” J. Phys. Conf. Ser., vol. 935, p. 012040, 2017, doi: https://doi.org/10.1088/1742-6596/935/1/012040
  55. R. Pradoto, E. Puri, T. Hadinata, Q. D. Rahman, R. M. Az-zuchruf, “Improving Strength of Porous Asphalt: A Nano Material Experimental Approach,” J. Rekayasa Sipil, vol. 15, no. 2, p. 75, Dec. 2019, doi: https://doi.org/10.25077/jrs.15.2.75-89.2019
  56. S. Al-Merzah, S. Al-Busaltan, and H. Al Nageim, “Characterizing Cold Bituminous Emulsion Mixtures Comprised of Palm Leaf Ash,” J. Mater. Civ. Eng., vol. 31, no. 6, 2019, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002714
  57. M. Arabani and N. Esmaaeli, “Laboratory evaluation on effect of groundnut shell ash on performance parameters of asphalt binder and mixes,” Road Mater. Pavement Des., vol. 21, no. 6, pp. 1565–1587, Aug. 2020, doi: https://doi.org/10.1080/14680629.2018.1560356
  58. R. Al-Yasari and S. Al-Busaltan, “The effects of reed fly ash modified bitumen on the volumetric and mechanical properties of open grade friction course mixtures,” IOP Conf. Ser. Mater. Sci. Eng., vol. 1067, no. 1, p. 012075, Feb. 2021, doi: https://doi.org/10.1088/1757-899X/1067/1/012075
  59. N. Su, F. Xiao, J. Wang, L. Cong, S. Amirkhanian, “Productions and applications of bio-asphalts – A review,” Constr. Build. Mater., vol. 183, pp. 578–591, Sep. 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.06.118
  60. S. Aflaki, P. Hajikarimi, E. H. Fini, B. Zada, “Comparing Effects of Biobinder with Other Asphalt Modifiers on Low-Temperature Characteristics of Asphalt,” J. Mater. Civ. Eng., vol. 26, no. 3, pp. 429–439, Mar. 2014, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0000835
  61. N. A. Abdul Raman, M. R. Hainin, N. Abdul Hassan, F. N. Ani, “A Review on the Application of Bio-oil as an Additive for Asphalt,” J. Teknol., vol. 72, no. 5, 2015, doi: https://doi.org/10.11113/jt.v72.3948
  62. X. Jiang, P. Li, Z. Ding, A. Wang, H. Bing, J. Zhang, “Thermochemical liquefaction of wheat straw and its effectiveness as an extender for asphalt binders: Characterization of liquefied products and potential opportunities,” Constr. Build. Mater., vol. 305, p. 124769, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2021.124769
  63. C. Lopera, G. Córdoba, “Diseño de mezcla asfáltica tibia a partir de la mezcla de asfalto y aceite crudo de palma,” Dyna, vol. 80, pp. 99–108, 2013.
  64. M. H. Nahi, I. B. Kamaruddin, N. Madzlan, “The Utilization of Rice Husks Powder as an Antioxidant in Asphalt Binder,” Appl. Mech. Mater., vol. 567, pp. 539–544, Jun. 2014, doi: https://doi.org/10.4028/www.scientific.net/AMM.567.539
  65. L. P. Ingrassia, X. Lu, G. Ferrotti, F. Canestrari, “Chemical, morphological and rheological characterization of bitumen partially replaced with wood bio-oil: Towards more sustainable materials in road pavements,” J. Traffic Transp. Eng. vol. 7, no. 2, pp. 192–204, Apr. 2020, doi: https://doi.org/10.1016/j.jtte.2019.04.003
  66. J. Gao, H. Wang, Z. You, M. Mohd Hasan, Y. Lei, and M. Irfan, “Rheological Behavior and Sensitivity of Wood-Derived Bio-Oil Modified Asphalt Binders,” Appl. Sci., vol. 8, no. 6, p. 919, Jun. 2018, doi: https://doi.org/10.3390/app8060919
  67. A. M. Al-Sabaeei, M. B. Napiah, M. H. Sutanto, W. S. Alaloul, and A. Usman, “A systematic review of bio-asphalt for flexible pavement applications: Coherent taxonomy, motivations, challenges and future directions,” J. Clean. Prod., vol. 249, p. 119357, Mar. 2020, doi: https://doi.org/10.1016/j.jclepro.2019.119357
  68. S. Likitlersuang, T. Chompoorat, “Laboratory investigation of the performances of cement and fly ash modified asphalt concrete mixtures,” Int. J. Pavement Res. Technol., vol. 9, no. 5, pp. 337–344, Sep. 2016, doi: https://doi.org/10.1016/j.ijprt.2016.08.002
  69. S. A. Alattieh, G. G. Al-Khateeb, W. Zeiada, A. Shanableh, “Performance assessment of bio-modified asphalt binder using extracted bio oil from date seeds waste,” Int. J. Syst. Assur. Eng. Manag., vol. 11, no. 6, pp. 1260–1270, 2020, doi: https://doi.org/10.1007/s13198-020-00980-1
  70. E. H. Fini, S. Hosseinnezhad, D. J. Oldham, E. Chailleux, and V. Gaudefroy, “Source dependency of rheological and surface characteristics of bio-modified asphalts,” Road Mater. Pavement Des., vol. 18, no. 2, pp. 408–424, Mar. 2017, doi: https://doi.org/10.1080/14680629.2016.1163281
  71. J. Gao, H. Wang, C. Liu, D. Ge, Z. You, and M. Yu, “High-temperature rheological behavior and fatigue performance of lignin modified asphalt binder,” Constr. Build. Mater., vol. 230, p. 117063, Jan. 2020, doi: https://doi.org/10.1016/j.conbuildmat.2019.117063
  72. R. Zhang, Z. You, J. Ji, Q. Shi, and Z. Suo, “A Review of Characteristics of Bio-Oils and Their Utilization as Additives of Asphalts,” Molecules, vol. 26, no. 16, p. 5049, Aug. 2021, doi: https://doi.org/10.3390/molecules26165049
  73. Z. Lu, A. Sha, W. Wang, J. Gao, “Studying the Properties of SBS/Rice Husk Ash-Modified Asphalt Binder and Mixture,” Adv. Mater. Sci. Eng., vol. 2020, pp. 1–11, Sep. 2020, doi: https://doi.org/10.1155/2020/4545063
  74. X. Wang, Y. Guo, G. Ji, Y. Zhang, J. Zhao, H. Su, “Effect of Biowaste on the High- and Low-Temperature Rheological Properties of Asphalt Binders,” Adv. Civ. Eng., vol. 2021, pp. 1–14, May 2021, doi: https://doi.org/10.1155/2021/5516546
  75. A. V. R. Sihombing, B. S. Subagio, E. S. Hariyadi, A. Yamin, “Chemical, morphological, and high temperature rheological behaviour of Bioasbuton® as an alternative binder for asphalt concrete in Indonesia,” J. King Saud Univ. - Eng. Sci., vol. 33, no. 5, pp. 308–317, Jul. 2021, doi: https://doi.org/10.1016/j.jksues.2020.07.006
  76. C. Xu et al., “Effect of Lignin Modifier on Engineering Performance of Bituminous Binder and Mixture,” Polymers (Basel)., vol. 13, no. 7, p. 1083, Mar. 2021, doi: https://doi.org/10.3390/polym13071083
  77. S. Girimath, D. Singh, “Effects of bio-oil on performance characteristics of base and recycled asphalt pavement binders,” Constr. Build. Mater., vol. 227, p. 116684, Dec. 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.116684
  78. C. Wang, T. Xie, W. Cao, “Performance of bio-oil modified paving asphalt: chemical and rheological characterization,” Mater. Struct., vol. 52, no. 5, p. 98, Oct. 2019, doi: https://doi.org/10.1617/s11527-019-1399-9
  79. D.-X. Bao, Y.-Y. Yu, and Q.-M. Zhao, “Evaluation of the chemical composition and rheological properties of bio-asphalt from different biomass sources,” Road Mater. Pavement Des., vol. 21, no. 7, pp. 1829–1843, Oct. 2020, doi: https://doi.org/10.1080/14680629.2019.1568287
  80. A. M. Hung, M. Mousavi, F. Pahlavan, and E. H. Fini, “Intermolecular Interactions of Isolated Bio-Oil Compounds and Their Effect on Bitumen Interfaces,” ACS Sustain. Chem. Eng., vol. 5, no. 9, pp. 7920–7931, Sep. 2017, doi: https://doi.org/10.1021/acssuschemeng.7b01462