Vol. 21 Núm. 3 (2022): Revista UIS Ingenierías
Artículos

Síntesis y caracterización de láminas de grafeno a partir de polvo de grafito mediante molienda de bolas

Zahoor Awan
NED University of Engineering and Technology
Asad Akhter Naqvi
NED University of Engineering and Technology
Zain Shahid
NED University of Engineering and Technology
Faaz Ahmed Butt
NED University of Engineering and Technology
Faizan Raza
NED University of Engineering and Technology

Publicado 2022-07-12

Palabras clave

  • grafeno,
  • grafito,
  • molienda de bolas,
  • síntesis,
  • caracterización

Cómo citar

Awan , Z., Naqvi, A. A. ., Shahid , Z. ., Butt , F. A. ., & Raza , F. . (2022). Síntesis y caracterización de láminas de grafeno a partir de polvo de grafito mediante molienda de bolas. Revista UIS Ingenierías, 21(3), 71–76. https://doi.org/10.18273/revuin.v21n3-2022006

Resumen

Debido a la tendencia al alza en el material bidimensional, el grafeno ha ganado mucho interés en el pasado reciente. El grafeno es el alótropo de carbono 2D con propiedades mecánicas, químicas y eléctricas mejoradas de alta resistencia. A pesar de tener excelentes propiedades entre otros tipos de alótropos de carbono, el uso del grafeno es limitado debido a su costosa técnica de síntesis. En esta investigación se adapta un método económico y efectivo para la preparación de grafeno a partir de polvo de grafito. El polvo de grafito se trata térmicamente para preparar el grafito exfoliado y luego se muele para producir las láminas de grafeno 2D. El grafeno sintetizado se caracteriza por difractometría de rayos X (XRD) y microscopio electrónico de barrido (SEM). Los resultados de XRD muestran que el grafeno se sintetiza con éxito y los resultados de SEM muestran que el grafeno es 2D que se puede usar en varias aplicaciones. Esta investigación proporciona una dirección para la síntesis de grafeno a partir de polvo de grafito a escala industrial.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. K. S. Novoselova. K. Geims. V. Morozovd. Jiangy. Zhangs. V. Dubonosi. V. Grigorievaand A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films,” Science, vol. 306, no. 5696, pp. 666-669, 2004, doi: https://doi.org/10.1126/science.1102896
  2. K. I. Bolotin et al., “Ultrahigh electron mobility in suspended graphene,” Solid State Communications, pp. vol. 146, pp. 351–355, 2008, doi: https://doi.org/10.1016/j.ssc.2008.02.024
  3. L. Banszerus et al., “Ultrahigh-mobility graphene devices from chemical vapor deposition on reusable copper,” Science Advances, vol. 1 no. 6, 2015, doi: https://doi.org/10.1126/sciadv.1500222
  4. A. A. Balandin et al., “Superior Thermal Conductivity of Single-Layer Graphene 2008,” Nano Lett., vol. 8, no. 3, pp. 902–907, 2008, doi: https://doi.org/10.1021/nl0731872
  5. D. L. Nika, A. A. Balandin, “Phonons and thermal transport in graphene and graphene-based materials,” IOP SCIENCE, vol. 036502, 2017, doi: https://doi.org/10.1088/1361-6633/80/3/036502
  6. A. A. Balandin, “Phononics of Graphene and Related Materials”, ACS NANO, vol. 14. no. 5, pp. 5170-5178, 2020, doi: https://doi.org/10.1021/acsnano.0c02718
  7. M. J. Allen, V. C. Tung, R. B. Kaner, “Honeycomb Carbon: A Review of Graphene,” Chem. Rev. vol. 110, no. 1, pp. 132–145, 2010, doi: https://doi.org/10.1021/cr900070d
  8. C. Lee, “Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene,” SCIENCE, vol. 385, no. 2008, 2012, doi: https://doi.org/10.1126/science.1157996
  9. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nature Photonics, vol. 4, pp. 611–622, 2010, doi: https://doi.org/10.1038/nphoton.2010.186
  10. T. Han et al., “Extremely efficient flexible organic light-emitting diodes with modified graphene anode,” Nature Photonics, vol. 6, pp. 105–110, 2012, doi: https://doi.org/10.1038/nphoton.2011.318
  11. B. Kulyk et al., “A critical review on the production and application of graphene and graphene-based materials in anti-corrosion coatings,” Crit. Rev. Solid State Mater. Sci., vol. 47, no. 3, pp. 309–355, 2021, doi: https://doi.org/10.1080/10408436.2021.1886046
  12. J. Y. Lim, N. M. Mubarak, E. C. Abdullah, S. Nizamuddin, M. Khalid, Inamuddin, “Recent trends in the synthesis of graphene and graphene oxide based nanomaterials for removal of heavy metals — A review,” J. Ind. Eng. Chem., vol. 66, pp. 29–44, 2018, doi: https://doi.org/10.1016/j.jiec.2018.05.028
  13. S. Alam, B. Nizam, U. Maksudul, “Synthesis of graphene,” Int. Nano Lett., vol. 6, pp. 65-83, 2016, doi: https://doi.org/10.1007/s40089-015-0176-1
  14. N. Kumar et al., “Top-down synthesis of graphene: A comprehensive review,” FlatChem, vol. 27, 2021, doi: https://doi.org/10.1016/j.flatc.2021.100224
  15. D. Pe, D. Pen, I. Pozo, E. Guitia, “Synthesis of Nanographenes, Starphenes, and Sterically Congested Polyarenes by Aryne Cyclotrimerization,” Acc. Chem. Res., vol. 52, no. 9, pp 2472-2481, 2019, doi: https://doi.org/10.1021/acs.accounts.9b00269
  16. L. Hlekelele, P. J. Franklyn, K. Tripathi, S. H. Durbach, “Morphological and crystallinity differences in nitrogen-doped carbon nanotubes grown by chemical vapour deposition decomposition of melamine over coal fly ash” RSC Adv., 2016, doi: https://doi.org/10.1039/C6RA16858B
  17. R. Ye, D. K. James, J. M. Tour, “Laser-Induced Graphene,” Acc Chem Res. Vo. 51, no. 7, pp 1609-1620, 2018, doi: https://doi.org/10.1021/acs.accounts.8b00084
  18. H. C. Schniepp et al., “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide,” J. Phys. Chem. B, vol. 2, pp. 8535–8539, 2006, doi: https://doi.org/10.1021/jp060936f
  19. N. Antonatos, H. Ghodrati, “Elements beyond graphene: Current state and perspectives of elemental monolayer deposition by bottom-up approach,” Applied Materials Today, vol. 18, 2020, doi: https://doi.org/10.1016/j.apmt.2019.100502
  20. A. G. Olabi, M. A. Abdelkareem, T. Wilberforce, E. T. Sayed, “Application of graphene in energy storage device – A review,” Renew. Sustain. Energy Rev., vol. 135, 2021, doi: https://doi.org/10.1016/j.rser.2020.110026
  21. A. S. Nair, V. Nallusamy, K. Jayasankar, S. Ss, “Scalable preparation of graphene from graphite ore via mechano-chemical ball milling,” Mater. Manuf. Process., vol. 37, no. 1, pp. 113–122, 2022, doi: https://doi.org/10.1080/10426914.2021.1945094
  22. M. A. Saiful Badri, M. M. Salleh, N. F. ain Md Noor, M. Y. A. Rahman, A. A. Umar, “Green synthesis of few-layered graphene from aqueous processed graphite exfoliation for graphene thin film preparation,” Mater. Chem. Phys., vol. 193, pp. 212–219, 2017, doi: https://doi.org/10.1016/j.matchemphys.2017.02.029
  23. A. A. Naqvi, A. Zahoor, A. A. Shaikh, F. A. Butt, F. Raza, I. U. Ahad, “Aprotic lithium air batteries with oxygen-selective membranes,” Mater. Renew. Sustain. Energy, vol. 11, pp. 33-46, 2022, doi: https://doi.org/10.1007/s40243-021-00205-w