Vol. 21 Núm. 3 (2022): Revista UIS Ingenierías
Artículos

Análisis por condición de servicio causado por vibración vertical inducida por peatones en estructuras

Daniel Gomez
Universidad del Valle
Sandra Villamizar
Universidad del Valle
Albert Ortiz
Universidad del Valle

Publicado 2022-10-01

Palabras clave

  • interacción vertical humano-estructura,
  • análisis de vibraciones verticales en condición de servicio,
  • carga inducida por peatones,
  • códigos de diseño,
  • puentes peatonales,
  • evaluación de la vibración estructural,
  • modelos de carga para peatones,
  • respuesta dinámica vertical,
  • interacción multitud-estructura,
  • vibración a baja frecuencia
  • ...Más
    Menos

Cómo citar

Gomez, D., Villamizar, S., & Ortiz, A. (2022). Análisis por condición de servicio causado por vibración vertical inducida por peatones en estructuras. Revista UIS Ingenierías, 21(3), 135–152. https://doi.org/10.18273/revuin.v21n3-2022011

Resumen

Estructuras civiles tales como tribunas, losas, puentes peatonales y escaleras están presentando vibraciones verticales inaceptables cuando se ven afectadas por actividades humanas. Por lo tanto, todavía no se tiene claridad sobre los efectos producidos por la interacción entre el ser humano y la estructura que, en algunos casos, pueden llegar a aumentar la respuesta estructural comprometiendo el desempeño para condiciones de servicio. Un examen a las normas y códigos de diseño existentes, arroja una amplia gama de resultados, lo que demuestra que no son consistentes cuando las estructuras están expuestas a cargas inducidas por peatones. Este estudio tiene como objetivo identificar los mecanismos de vibración, los modelos matemáticos y los métodos para abordar la vibración vertical excesiva en las estructuras peatonales. Este análisis establece un conjunto de recomendaciones sobre las cargas que producen los peatones y las respuestas estructurales que pueden producir, lo que genera el potencial para futuros enfoques más racionales que mejoren el análisis y el diseño de estructuras peatonales.

Descargas

Referencias

  1. A. Cunha, C. Moutinho, “Active control of vibrations in pedestrian bridges,” in Conference of the European Association for Structural Dynamics (Eurodyn’99), vol. 2, 1999, pp. 783–788.
  2. R. Sachse, A. Pavic, P. Reynolds, “Humanstructure dynamic interaction in civil engineering dynamics: A literature review,” Shock and Vibration Digest, vol. 35, no. 1, pp. 3–18, 2003, doi: https://doi.org/10.1177/0583102403035001624
  3. D. Gomez, S. J. Dyke, S. Rietdyk, “Experimental verification of a substructure-based model to describe pedestrian-bridge interaction,” Journal of Bridge Engineering, vol. 23, no. 4, pp. 1–19, 2018, doi: https://doi.org/10.1061/(ASCE)BE.1943-5592.0001204
  4. B. Wolmuth and J. Surtees, “Crowd-related failure of bridges,” Proceedings of the ICE: Civil Engineering, vol. 156, no. 3, pp. 116–123, 2003, doi: https://doi.org/10.1680/cien.2003.156.3.116
  5. B. Ellingwood, A. Tallin, “Structural service ability: floor vibrations,” J. Struct. Eng., vol. 110, no. 2, pp. 401–418, 1984.
  6. H. Bachmann, W. J. Ammann, F. Deischl, J. Eisenmann, I. Floegl, G. H. Hirsch, G. K. Klein, G. J. Lande, O. Mahrenholtz, H. G. Natke et al., Vibration problems in structures: practical guidelines. Birkhäuser, 1995.
  7. A. R. Ortiz, J. M. Caicedo, “Modeling the effects of a human standing on a structure using a closed loop–control system,” Journal of Engineering Mechanics, vol. 145, no. 5, p. 04019025, 2019.
  8. F. Danion, E. Varraine, M. Bonnard, J. Pailhous, “Stride variability in human gait: The effect of stride frequency and stride length,” Gait and Posture, vol. 18, no. 1, pp. 69–77, 2003, doi: https://doi.org/10.1016/S0966-6362(03)00030-4
  9. H. V. Dang and S. Živanović, “Experimental characterisation of walking locomotion on rigid level surfaces using motion capture system,” Engineering Structures, vol. 91, pp. 141–154, 2015, doi: https://doi.org/10.1016/j.engstruct.2015.03.003
  10. M. García-diéguez, J. L. Zapico-Valle, “Sensitivity of the vertical response of footbridges to the frequency variability of crossing pedestrians,” Vibration, pp. 290–311, 2018, doi: https://doi.org/10.3390/vibration1020020
  11. D. Gomez, S. Rietdyk, S. J. Dyke, “Spatio-temporal assessment of gait kinematics in vertical pedestrian-structure interaction,” Structures, vol. 31, no. February, pp. 1199–1206, 2021, doi: https://doi.org/10.1016/j.istruc.2021.02.024
  12. AASHTO, LRFD Guide Specifications for the Design of Pedestrian Bridges, 2009, no. T-5 (WAI 31).
  13. NSR-10, Norma Colombianas de Diseño y Construcción Sismo Resistente. Asociación Colombiana de Ingeniería Sísmica, 2010.
  14. CCP-14, Norma Colombiana de Diseño de Puentes. Asociación Colombiana de Ingeniería Sísmica, 2014.
  15. R. Stevenson, “Description of bridges of suspension,” The Edinburgh Philosophical Journal, vol. 5, no. 10, pp. 237–256, 1821.
  16. C. J. Tilden, “Kinetic effects of crowds,” Transactions of the American Society of Civil Engineers, vol. 76, no. 1, pp. 2107–2126, 1913.
  17. A. N. Blekherman, “Swaying of pedestrian bridges,” Journal of Bridge Engineering, vol. 10, no. 2, pp. 142–150, 2005, doi: https://doi.org/10.1061/(ASCE)1084-0702(2005)10:2(142)
  18. Y. Fujino, L. Sun, B. M. Pacheco, A. Member, P. Chaiseri, “Tuned liquid damper (TLD) for suppressing horizontal motion of structures,” Journal of Engineering Mechanics, vol. 118, no. 10, pp. 2017–2030, 1992, doi: https://doi.org/10.1061/(ASCE)0733-9399(1992)118:10(2017)
  19. Y. Fujino, B. Pacheco, S. I. Nakamura, P. Warnitchai, “Synchronization of human walking observed during lateral vibration of a congested pedestrian bridge,” Earthquake Engineering & Structural Dynamics, vol. 22, no. December 1993, pp. 741–758, 1993, doi: https://doi.org/10.1002/eqe.4290220902
  20. S. I. Nakamura, Y. Fujino, “Lateral vibration on a pedestrian cable-stayed bridge,” Structural Engineering International: Journal of the International Association for Bridge and Structural Engineering (IABSE), vol. 12, no. 4, pp. 295–300, 2002.
  21. N. Poovarodom, S. Kanchanosot, P. Warnitchai, “Application of non-linear multiple tuned mass dampers to suppress man-induced vibrations of a pedestrian bridge,” Earthquake Engineering and Structural Dynamics, vol. 32, no. 7, pp. 1117–1131, 2003, doi: https://doi.org/10.1002/eqe.265
  22. M. Brand, J. Sanjayan, A. Sudbury, “Dynamic response of pedestrian bridges for random crowdloading,” Australian Journal of Civil Engineering, vol. 3, no. 1, pp. 27–38, 2017, doi: https://doi.org/10.1080/14488353.2007.11463918
  23. F. Ricciardelli, C. Demartino, “Design of footbridges against pedestrian-induced vibrations,” Journal of Bridge Engineering, vol. 21, no. 8, pp. 1–13, 2016, doi: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000825
  24. Skyscrapercity, “Solférino bridge,” 2021, https://www.skyscrapercity.com/
  25. LondonTown, “Millennium bridge,” 2021, http://www.londontown.com/
  26. S. Živanović, A. Pavić, E. Ingólfsson, “Modelling spatially unrestricted pedestrian traffic on footbridges,” ASCE Journal of Structural Engineering, vol. 136, no. 10, pp. 1296–1308, 2010, doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0000226
  27. G. Piccardo, F. Tubino, “Equivalent spectral model and maximum dynamic response for the serviceability analysis of footbridges,” Engineering Structures, vol. 40, pp. 445–456, 2012, doi: https://doi.org/10.1016/j.engstruct.2012.03.005
  28. P. Dallard, T. Fitzpatrick, A. Flint, A. Low, R. Smith, M. Willford, M. Roche, “London Millennium bridge: pedestrian-induced lateral vibration,” Journal of Bridge Engineering, vol. 6, no. 6, pp. 412–417, 2001, doi: https://doi.org/10.1061/(ASCE)1084-0702(2001)6:6(412)
  29. T. M. Roberts, “Synchronised pedestrian excitation of footbridges,” Proceedings of ICE, Bridge Engineering, vol. 156, no. 4, pp. 155–160, 2003, doi: https://doi.org/10.1680/bren.2003.156.4.155
  30. F. Ricciardelli, A. D. Pizzimenti, “Lateral walking-induced forces on footbridges,” Journal of Bridge Engineering, vol. 12, no. 6, pp. 677–688, 2007, doi: https://doi.org/10.1061/(ASCE)1084-0702(2007)12:6(677)
  31. B. Eckhardt, E. Ott, S. H. Strogatz, D. M. Abrams, A. McRobie, “Modeling walker synchronization on the Millennium bridge,” Physical Review E - Statistical, Nonlinear, and Soft Matter Physics, vol. 75, no. 2, pp. 1–10, 2007, doi: https://doi.org/10.1103/PhysRevE.75.021110
  32. F. Venuti, L. Bruno, N. Bellomo, “Crowd dynamics on a moving platform: Mathematical modelling and application to lively footbridges,” Mathematical and Computer Modelling, vol. 45, no. 3-4, pp. 252–269, 2007, doi: https://doi.org/10.1016/j.mcm.2006.04.007
  33. J. Macdonald, “Lateral excitation of bridges by balancing pedestrians,” Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol. 465, no. 2104, pp. 1055–1073, 2009, doi: https://doi.org/10.1098/rspa.2008.0367
  34. S. Živanović, A. Pavić, P. Reynolds, “Vibration serviceability of footbridges under human-induced excitation: A literature review,” Journal of Sound and Vibration, vol. 279, no. 1-2, pp. 1–74, 2005, doi: https://doi.org/10.1016/j.jsv.2004.01.019
  35. E. C. f. S. EN 1991-2, Eurocode 1 - Actions on structures – Part 2: General actions -Traffic loads on bridges, European Committee for Standardization CEN,Brussels, Belgium, 2002.
  36. ONT95, Ontario Highway Bridge Design Code ONT95, Ontario Government, Ontario, Canada, 1995.
  37. E. C. f. S. EN 1995-2, Eurocode 5 - Design of timber structures – Part 2: bridges, Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC,Brussels, Belgium, 2004.
  38. Sétra, “Footbridges, assessment of vibrational behavior of footbridges under pedestrian loading,” in Technical guide, Service d’Etudes Techniques des Routes et Autoroutes, Paris, France, 2006.
  39. ISO-10137, Bases for design of structures – Serviceability of buildings and walkways against vibrations, International standard, Switzerland, 2007.
  40. HIVOSS, Human induced Vibrations of Steel Structures Design of Footbridges (HIVOSS), 2007.
  41. P. Archbold, J. Keogh, C. Caprani, P. Fanning, “A parametric study of pedestrian vertical force models for dynamic analysis of footbridges,” in EVACES – Experimental Vibration Analysis for Civil Engineering Structures, Varenna, Italy, 2011, pp. 35–44.
  42. C. Caprani, J. Keogh, P. Archbold, and P. Fanning, “Characteristic vertical response of a footbridge due to crowd loading,” in Proceedings of the 8th international conference on structural dynamics (Eurodyn 2011), Leuven, Belgium, 2011, pp. 90–106.
  43. C. Caprani, E. Ahmadi, “Formulation of human-structure system models for vertical vibration,” Journal of Sound and Vibration, vol. 377, pp. 346–367, 2016, doi: https://doi.org/10.1016/j.jsv.2016.05.015
  44. P. Fanning, P. Archbold, A. Pavic, “A novel interactive pedestrian load model for flexible footbridges,” in Proceeding of the 2005 Society for Experimental Mechanics Annual Conference on Experimental and Applied Mechanics, Portland, OR, 2005, pp. 7–9.
  45. M. A. Toso, H. M. Gomes, F. T. Silva, R. L. Pimentel, “A biodynamic model fit for vibration serviceability in footbridges using experimental measurements in a designed force platform for vertical load gait analysis,” in Icem15: 15Th International Conference on Experimental Mechanics, vol. 22, Porto, Portugal, 2013, pp. 23–33.
  46. M. Pfeil, N. Amador, R. Pimentel, R. Vasconcelos, “Analytic – numerical model for walking person – footbridge structure interaction,” in Proceedings of the 9th International Conference on Structural Dynamics, EURODYN 2014, Porto, Portugal, 2014, pp. 1079–1086.
  47. M. Zhang, Georgakis, W. Qu, J. Chen, “SMD model parameters of pedestrians for vertical human structure interaction,” IMAC XXXIII A Conference and Exposition on Structural Dynamics, 2015.
  48. J. F. Jimenez-Alonso, A. Saez, E. Caetano, F. Magalhaes, “Vertical crowd-structure interaction model to analyze the change of the modal properties of a footbridge,” Journal of Bridge Engineering, pp. 1–19, 2016, doi: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000828
  49. M. A. Toso, H. M. Gomes, F. T. Da Silva, R. L. Pimentel, “Experimentally fitted biodynamic models for pedestrian-structure interaction in walking situations,” Mechanical Systems and Signal Processing, vol. 72-73, pp. 590–606, 2016, doi: https://doi.org/10.1016/j.ymssp.2015.10.029
  50. S. Mochon, T. McMahon, “Ballistic walking: an improved model,” Mathematical Biosciences, vol. 52, pp. 241–260, 1980. [Online]. Available: https://doi.org/10.1016/0025-5564(80)90070-X
  51. S. Onyshko, D. Winter, “A mathematical model for the dynamics of human locomotion,” Journal of Biomechanics, vol. 13, no. 4, pp. 361–368, 1980, doi: https://doi.org/10.1016/0021-9290(80)90016-0
  52. S. Siegler, R. Seliktar, and W. Hyman, “Simulation of human gait with the aid of a simple mechanical model,” Journal of Biomechanics, vol. 15, no. 6, pp. 415–425, 1982, doi: https://doi.org/10.1016/0021-9290(82)90078-1
  53. R. Alexander, “Simple models of human movement,” Applied Mechanics Reviews, vol. 48, no. 8, p. 461, 1995, doi: https://doi.org/10.1115/1.3005107
  54. H. Geyer, A. Seyfarth, R. Blickhan, “Compliant leg behaviour explains basic dynamics of walking and running,” Proceeding of the royal society of London: Biological science, vol. 1603, no. 273, pp. 2861–2867, 2006, doi: https://doi.org/10.1098/rspb.2006.3637
  55. B. R. Whittington, D. G. Thelen, “A Simple mass-spring model with roller feet can induce the ground reactions observed in human walking,” Journal of Biomechanical Engineering, vol. 131, no. 1, p. 011013, 2009, doi: https://doi.org/10.1115/1.3005147
  56. M. Bocian, J. H. G. Macdonald, J. F. Burn, “Biomechanically inspired modeling of pedestrian-induced vertical self-excited forces,” Journal of Bridge Engineering, vol. 18, no. 12, pp. 1336–1346, 2013, doi: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000490
  57. J. W. Qin, S. S. Law, Q. S. Yang, N. Yang, “Finite element analysis of pedestrian bridge dynamic interaction,” Journal of Applied Mechanics, vol. 81, no. 4, p. 041001, 2013.
  58. R. Sachse, A. Pavic, P. Reynolds, “Pedestrian-bridge dynamic interaction, including human participation,” Journal of Sound and Vibration, vol. 332, no. 4, pp. 1107–1124, 2013, doi: https://doi.org/10.1016/j.jsv.2012.09.02
  59. E. Shahabpoor, A. Pavic, V. Racic, “Identification of mass-spring-damper model of walking humans,” Structures, vol. 5, pp. 233–246, 2016, https://doi.org/10.1016/j.istruc.2015.12.001
  60. S. Živanović, A. Pavic, P. Reynolds, “Probability-based prediction of multi-mode vibration response to walking excitation,” Engineering Structures, vol. 29, no. 6, pp. 942–954, 2007, doi: https://doi.org/10.1016/j.engstruct.2006.07.004
  61. V. Racic, A. Pavić, J. Brownjohn, “Experimental identification and analytical modelling of human walking forces: Literature review,” Journal of Sound and Vibration, vol. 326, no. 1-2, pp. 1–49, 2009, doi: https://doi.org/10.1016/j.jsv.2009.04.020
  62. D. Gomez, S. J. Dyke, S. Rietdyk “Structured uncertainty for a pedestrian-structure interaction model,” Journal of Sound and Vibration, vol. 474, p. 115237, 2020, doi: https://doi.org/10.1016/j.jsv.2020.115237
  63. G. Piccardo, F. Tubino, “Simplified procedures for vibration serviceability analysis of footbridges subjected to realistic walking loads,” Computers and Structures, vol. 87, no. 13-14, pp. 890–903, 2009, doi: https://doi.org/10.1016/j.compstruc.2009.04.006
  64. L. Pedersen and C. Frier, “Sensitivity of footbridge vibrations to stochastic walking parameters,” Journal of Sound and Vibration, vol. 329, no. 13, pp. 2683–2701, 2010, doi: https://doi.org/10.1016/j.jsv.2009.12.022
  65. C. C. Caprani, J. Keogh, P. Archbold, P. Fanning, “Enhancement factors for the vertical response of footbridges subjected to stochastic crowd loading,” Computers and Structures, vol. 102-103, pp. 87–96, 2012, doi: https://doi.org/10.1016/j.compstruc.2012.03.006
  66. S. Krenk, “Dynamic response to pedestrian loads with statistical frequency distribution,” Journal of Engineering Mechanics, vol. 138, no. 10, pp. 1275–1281, 2012, doi: https://doi.org/10.1061/(ASCE)EM.1943-7889.0000425
  67. M. Zhang, C. T. Georgakis, J. Chen, “Biomechanically excited SMD model of a walking pedestrian,” Journal of Bridge Engineering, vol. 21, no. 8, p. C4016003, 2016, doi: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000910
  68. L. Bruno and A. Corbetta, “Uncertainties in crowd dynamic loading of footbridges: A novel multi-scale model of pedestrian traffic,” Engineering Structures, vol. 147, pp. 545–566, 2017, doi: https://doi.org/10.1016/j.engstruct.2017.05.066
  69. S. Živanović, “Probability-based estimation of vibration for pedestrian structures due to walking,” Ph.D. dissertation, University of Sheffield, 2006.
  70. E. Ingólfsson, C. Georgakis, “A stochastic load model for pedestrian-induced lateral forces on footbridges,” Engineering Structures, vol. 33, no. 12, pp. 3454–3470, 2011, doi: https://doi.org/10.1016/j.engstruct.2011.07.009
  71. E. Ingólfsson, C. Georgakis, J. Jönsson, “Pedestrian-induced lateral vibrations of footbridges: A literature review,” Engineering Structures, vol. 45, pp. 21–52, 2012, doi: https://doi.org/10.1016/j.engstruct.2012.05.038
  72. Z. O. Muhammad and P. Reynolds, “Probabilistic multiple pedestrian walking force model including pedestrian inter-and intrasubject variabilities,” Advances in Civil Engineering, vol. 2020, 2020, doi: https://doi.org/10.1155/2020/9093037
  73. H. Wang, J. Chen, J. M. Brownjohn, “Parameter identification of pedestrian’s springmass-damper model by ground reaction force records through a particle filter approach,” Journal of Sound and Vibration, vol. 411, pp. 409–421, 2017, doi: https://doi.org/10.1016/j.jsv.2017.09.020
  74. F. Tubino, “Human-structure interaction in pedestrian bridges: A probabilistic approach,” Procedia Engineering, vol. 199, pp. 2883–2888, 2017, doi: https://doi.org/10.1016/j.proeng.2017.09.584
  75. A. Younis, O. Avci, M. Hussein, B. Davis, P. Reynolds, “Dynamic forces induced by a single pedestrian: a literature review,” Applied Mechanics Reviews, vol. 69, no. 2, 2017, doi: https://doi.org/10.1115/1.4036327
  76. J. Brownjohn, A. Pavic, P. Omenzetter, “A spectral density approach for modelling continuous vertical forces on pedestrian structures due to walking,” Canadian Journal of Civil Engineering, vol. 31, no. 1, pp. 65–77, 2004, doi: https://doi.org/10.1139/l03-072
  77. A. Ferrarotti, F. Tubino, “Generalized equivalent spectral model for serviceability analysis of footbridges,” Journal of Bridge Engineering, vol. 21, no. 12, pp. 942–954, 2016, doi: https://doi.org/10.1061/(ASCE)BE.1943-5592.0000963
  78. J. Brownjohn, V. Racic, J. Chen, “Universal response spectrum procedure for predicting walking-induced floor vibration,” Mechanical Systems and Signal Processing, vol. 70-71, pp. 1–15, 2015, doi: https://doi.org/10.1016/j.ymssp.2015.09.010
  79. Z. Muhammad, P. Reynolds, O. Avci, M. Hussein, “Review of pedestrian load models for vibration serviceability assessment of floor structures,” Vibration, vol. 2, no. 1, pp. 1–24, 2019, doi: https://doi.org/10.3390/vibration2010001
  80. C. Demartino, G. Quaranta, C. Maruccio, and V. Pakrashi, “Feasibility of energy harvesting from vertical pedestrian-induced vibrations of footbridges for smart monitoring applications,” Computer-Aided Civil and Infrastructure Engineering, no. 2011, pp. 1–22, 2021, doi: https://doi.org/10.1111/mice.12777
  81. S. Villamizar, D. Gomez, P. Thomson, “Effects of human-structure interaction in slabs,” Dyna, vol. 81, no. 184, pp. 129–137, 2014, doi: https://doi.org/10.15446/dyna.v81n184.39622
  82. H. V. Dang, S. Živanović, “Influence of low-frequency vertical vibration on walking locomotion,” Journal of Structural Engineering, vol. 142, no. 04016120, pp. 1–12, 2016, doi: https://doi.org/10.1061/(ASCE)ST.1943-541X.0001599
  83. S. H. Strogatz, D. M. Abrams, A. McRobie, B. Eckhardt, and E. Ott, “Theoretical mechanics: crowd synchrony on the Millennium Bridge,” Nature, vol. 438, no. 7064, pp. 43–44, 2005, doi: https://doi.org/10.1038/438043a
  84. V. Joshi, M. Srinivasan, “Walking on a moving surface: energy-optimal walking motions on a shaky bridge and a shaking treadmill can reduce energy costs below normal,” Mathematical, physical and engineering science, vol. 471, no. 2174, pp. 1–19, 2015, doi: https://doi.org/10.1098/rspa.2014.0662
  85. V. Joshi, M. Srinivasan, “Walking crowds on a shaky surface: stable walkers discover Millennium Bridge oscillations with and without pedestrian synchrony,” Biol. Lett., vol. 14, no. 10, p. 20180564, Oct. 2018, doi: https://doi.org/10.1098/rsbl.2018.0564
  86. S. Živanović, A. Pavic, P. Reynolds, “Humanstructure dynamic interaction in footbridges,” Proceedings of ICE, Bridge Engineering, vol. 158, no. 4, pp. 165–177, 2005, doi: https://doi.org/10.1680/bren.2005.158.4.165
  87. M. G. Pandy and N. Berme, “Synthesis of human walking: A planar model for single support,” Journal of Biomechanics, vol. 21, no. 12, pp. 1053–1060, 1988, doi: https://doi.org/10.1016/0021-9290(88)90251-5
  88. C. R. Lee, C. T. Farley, “Determinants of the center of mass trajectory in human walking and running,” The Journal of Experimental Biology, vol. 201, pp. 2935–2944, doi: https://doi.org/10.1242/jeb.201.21.2935
  89. S. Kim, S. Park, “Leg stiffness increases with speed to modulate gait frequency and propulsion energy,” Journal of Biomechanics, vol. 44, no. 7, pp. 1253–1258, 2011, doi: https://doi.org/10.1016/j.jbiomech.2011.02.072
  90. F. T. da Silva, H. M. B. F. Brito, R. L. Pimentel, “Modeling of crowd load in vertical direction using biodynamic model for pedestrians crossing footbridges,” Canadian Journal of Civil Engineering, vol. 40, pp. 1196–1204, 2013, doi: https://doi.org/10.1139/cjce-2011-0587
  91. A. Jakkula, A history of suspension bridges in bibliographical form. USA: Cooperative investigation of bridges types by the public roads administration and the agricultural and mechanical college of Texas, 1941.
  92. R. Hatfield, Theory of transverse strains and its applications in the construction of buildings. USA: Association of Engineering Societies, 1877.
  93. L. J. Johnson, New Data on the Weight of a Crowd of People. Association of Engineering Societies, 1905.
  94. E. Chaussé, Code of Building Laws and Regulations of the City of Montreal. Guertin printing Company, 1906.
  95. A. S. Nowak, K. R. Collins, Reliability of structures. CRC Press, 2012.
  96. I. Roos, “Human induced vibration on footbridges: Application and comparison of pedestrian load models,” Master’s thesis, Delft University of Technology, Netherlands, 2009.
  97. D. Zuo, J. Hua, D. Van Landuyt, “A model of pedestrian-induced bridge vibration based on full-scale measurement,” Engineering Structures, pp. 117–126, 2012, doi: https://doi.org/10.1016/j.engstruct.2012.06.015
  98. K. Van Nimmen, G. Lombaert, G. De Roeck, and P. Van den Broeck, “Vibration serviceability of footbridges: Evaluation of the current codes of practice,” Engineering Structures, vol. 59, no. 0, pp. 448–461, 2014, doi: https://doi.org/10.1016/j.engstruct.2013.11.006
  99. D. Gomez, “Human-induced vertical vibration on pedestrian structures: numerical and experimental assessment,” Ph.D. dissertation, Purdue University, 2019.
  100. A. M. Avossa, C. Demartino, F. Ricciardelli, “Design procedures for footbridges subjected to walking loads: comparison and remarks,” Baltic Journal of Road and Bridge Engineering, vol. 12, no. 2, pp. 94–105, 2017, doi: https://bjrbe-journals.rtu.lv/article/view/bjrbe.2017.12
  101. S. Živanović, I. M. Diaz, A. Pavić, “Influence of walking and standing crowds on structural dynamic properties,” in Proceedings of the 27th IMAC Conference, Orlando, Florida USA, 2009.
  102. E. Shahabpoor, A. Pavic, V. Racic, “Using MSD model to simulate human-structure interaction during walking,” in Topics in Dynamics of Civil Structures, Volume 4: Proceedings of the 31st IMAC, A Conference on Structural Dynamics, 2013, vol. 4, 2013, pp. 357–364.
  103. B. S. A. BS5400, Steel, Concrete and Composite Bridges—Part 2: Specification for Loads; Appendix C: Vibration Serviceability Requirements for Foot and Cycle Track Bridges. Great Britain, 1978.
  104. DIN-Fachbericht, DIN-Fachbericht 102, Deutsches Instiut für Normung, Betonbrücken, 2003.
  105. Bro2004, Vägverkets allmänna tekniska beskrivning för nybyggande och förbättring av broar, Svensk Byggtjänst, Stockholm, Sverige, 2004.