Impacto de las fuentes de energía renovable en la estabilidad de la tensión y técnicas de evaluación
Publicado 2023-09-12
Palabras clave
- estabilidad de tensión,
- generación solar,
- generación eólica,
- inestabilidad,
- impacto
- métodos de evaluación,
- recursos renovables,
- seguridad,
- sistemas de potencia,
- sistemas de distribución ...Más
Cómo citar
Derechos de autor 2023 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
La proliferación de fuentes de energía renovable y su impacto en los sistemas de potencia hacen necesaria la realización de estudios para asegurar la buena operación del sistema de potencia. Este artículo indaga investigaciones recientes sobre el impacto de las fuentes de energía renovable sobre la estabilidad de tensión y nuevos métodos empleados para evaluar esta estabilidad. Se estudian efectos de la generación de energía solar y eólica tanto individual como colectivamente, junto con otros modelos de inversores a través de los cuales se conectan fuentes de energía renovable a los sistemas de transmisión o redes de distribución. Además, se resaltan los resultados categorizándolos en un enfoque determinístico y probabilístico.
Descargas
Referencias
- L. Meegahapola, A. Sguarezi, J. S. Bryant, M. Gu, E. R. Conde D., R. B. A. Cunha, “Power system stability with power-electronic converter interfaced renewable power generation: Present issues and future trends,” Energies, vol. 13, no. 13, 2020, doi: https://doi.org/10.3390/en13133441
- R. Yan, N. Al-Masood, T. Kumar Saha, F. Bai, and H. Gu, “The anatomy of the 2016 South Australia blackout: A catastrophic event in a high renewable network,” IEEE Trans. Power Syst., vol. 33, no. 5, pp. 5374–5388, 2018, doi: https://doi.org/10.1109/TPWRS.2018.2820150
- M. Şahin, F. Blaabjerg, and A. Sangwongwanich, “A Comprehensive Review on Supercapacitor Applications and Developments,” Energies, vol. 15, no. 3, p. 674, 2022, doi: https://doi.org/10.3390/en15030674
- P. Kundur et al., “Definition and Classification of Power System Stability IEEE/CIGRE Joint Task Force on Stability Terms and Definitions,” IEEE Trans. Power Syst., vol. 19, no. 3, pp. 1387–1401, Aug. 2004, doi: https://doi.org/10.1109/TPWRS.2004.825981
- N. Hatziargyriou et al., “Definition and Classification of Power System Stability – Revisited & Extended,” IEEE Trans. Power Syst., vol. 36, no. 4, pp. 3271–3281, 2021, doi: https://doi.org/10.1109/TPWRS.2020.3041774
- J. Shair, H. Li, J. Hu, and X. Xie, “Power system stability issues, classifications and research prospects in the context of high-penetration of renewables and power electronics,” Renew. Sustain. Energy Rev., vol. 145, no. December 2020, Jul. 2021, doi: https://doi.org/10.1016/j.rser.2021.111111
- K. N. Hasan, R. Preece, J. V. Milanović, “Existing approaches and trends in uncertainty modelling and probabilistic stability analysis of power systems with renewable generation,” Renew. Sustain. Energy Rev., vol. 101, no. October 2018, pp. 168–180, Mar. 2019, doi: https://doi.org/10.1016/j.rser.2018.10.027
- N. Hosseinzadeh, A. Aziz, A. Mahmud, A. Gargoom, M. Rabbani, “Voltage Stability of Power Systems with Renewable-Energy Inverter-Based Generators: A Review,” Electronics, vol. 10, no. 2, p. 115, Jan. 2021, doi: https://doi.org/10.3390/electronics10020115
- M. Shafiullah, S. D. Ahmed, F. A. Al-Sulaiman, “Grid Integration Challenges and Solution Strategies for Solar PV Systems: A Review,” IEEE Access, vol. 10, pp. 52233–52257, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3174555
- . Kamil K, “Impact of High Penetration of Solar PV Output to Line Loading, Voltage and Power Losses,” Int. J. Adv. Trends Comput. Sci. Eng., vol. 8, no. 1.6, pp. 361–367, 2019, doi: https://doi.org/10.30534/ijatcse/2019/5381.62019
- E. Muhammad, A. Khan, N. Arbab, and E. Zainab Huma, “Voltage Profile and Stability Analysis for High Penetration Solar Photovoltaics,” Int. J. Eng. Work. Kambohwell Publ. Enterp., vol. 5, no. May 2018, pp. 109–114, 2018.
- S. Rahman et al., “Analysis of Power Grid Voltage Stability With High Penetration of Solar PV Systems,” IEEE Trans. Ind. Appl., vol. 57, no. 3, pp. 2245–2257, 2021, doi: https://doi.org/10.1109/TIA.2021.3066326
- E. Munkhchuluun, L. Meegahapola, and A. Vahidnia, “Long-term voltage stability with large-scale solar-photovoltaic (PV) generation,” Int. J. Electr. Power Energy Syst., vol. 117, no. May 2019, p. 105663, May 2020, doi: https://doi.org/10.1016/j.ijepes.2019.105663
- S. S. Refaat, H. Abu‐Rub, A. P. Sanfilippo, and A. Mohamed, “Impact of grid‐tied large‐scale photovoltaic system on dynamic voltage stability of electric power grids,” IET Renew. Power Gener., vol. 12, no. 2, pp. 157–164, Feb. 2018, doi: https://doi.org/10.1049/iet-rpg.2017.0219
- H. Sultan, A. Diab, O. Kuznetsov, Z. Ali, and O. Abdalla, “Evaluation of the Impact of High Penetration Levels of PV Power Plants on the Capacity, Frequency and Voltage Stability of Egypt’s Unified Grid,” Energies, vol. 12, no. 3, p. 552, Feb. 2019, doi: https://doi.org/10.3390/en12030552
- C. Dondariya and D. K. Sakravdia, “Voltage Stability Assessment and Improvement in Power Systems with Solar Photovoltaic Penetration,” in 2021 IEEE 2nd International Conference On Electrical Power and Energy Systems (ICEPES), 2021, pp. 1–4. doi: https://doi.org/10.1109/ICEPES52894.2021.9699827
- G. Lammert, D. Premm, L. D. P. Ospina, J. C. Boemer, M. Braun, T. Van Cutsem, “Control of Photovoltaic Systems for Enhanced Short-Term Voltage Stability and Recovery,” IEEE Trans. Energy Convers., vol. 34, no. 1, pp. 243–254, Mar. 2019, doi: https://doi.org/10.1109/TEC.2018.2875303
- A. S. Saidi, “Impact of large photovoltaic power penetration on the voltage regulation and dynamic performance of the Tunisian power system,” Energy Explor. Exploit., vol. 38, no. 5, pp. 1774–1809, Sep. 2020, doi: https://doi.org/10.1177/0144598720940864
- S. M. Al-jubouri, “Influence of Photovoltaic System on Voltage Stability,” Int. J. Adv. Eng. Manag. Res., vol. 3, no. 6, pp. 77–85, 2018.
- A. Sonawane, A. Umarikar, “Small-Signal Stability Analysis of PV-Based Synchronverter Including PV Operating Modes and DC-Link Voltage Controller,” IEEE Trans. Ind. Electron., vol. 69, no. 8, pp. 8028–8039, 2022, doi: https://doi.org/10.1109/TIE.2021.3109506
- D. S. Kumar, A. Sharma, D. Srinivasan, and T. Reindl, “Stability implications of bulk power networks with large scale PVs,” Energy, vol. 187, p. 115927, Nov. 2019, doi: https://doi.org/10.1016/j.energy.2019.115927
- O. B. Adewuyi, M. E. Lotfy, B. O. Akinloye, H. O. Rashid Howlader, T. Senjyu, and K. Narayanan, “Security-constrained optimal utility-scale solar PV investment planning for weak grids: Short reviews and techno-economic analysis,” Appl. Energy, vol. 245, no. January, pp. 16–30, 2019, doi: https://doi.org/10.1016/j.apenergy.2019.04.008
- J.-K. Kim, B. Lee, J. Ma, G. Verbic, S. Nam, and K. Hur, “Understanding and Evaluating Systemwide Impacts of Uncertain Parameters in the Dynamic Load Model on Short-Term Voltage Stability,” IEEE Trans. Power Syst., vol. 36, no. 3, pp. 2093–2102, 2021, doi: https://doi.org/10.1109/TPWRS.2020.3027692
- S. Li, Z. Wei, and Y. Ma, “Fuzzy Load-Shedding Strategy Considering Photovoltaic Output Fluctuation Characteristics and Static Voltage Stability,” Energies, vol. 11, no. 4, p. 779, Mar. 2018, doi: https://doi.org/10.3390/en11040779
- T. Lund, H. Wu, H. Soltani, J. G. Nielsen, G. K. Andersen, and X. Wang, “Operating Wind Power Plants Under Weak Grid Conditions Considering Voltage Stability Constraints,” IEEE Trans. Power Electron., vol. 37, no. 12, pp. 15482–15492, Dec. 2022, doi: https://doi.org/10.1109/TPEL.2022.3197308
- T. V. C. and C. Vournas, “Voltage Stability of Electrical Power Systems,” J. Al-Azhar Univ. Eng. Sect., vol. 15, no. 55, pp. 538–545, 1998.
- B. B. Adetokun, C. M. Muriithi, and J. O. Ojo, “Voltage stability assessment and enhancement of power grid with increasing wind energy penetration,” Int. J. Electr. Power Energy Syst., vol. 120, no. January 2020, p. 105988, Sep. 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105988
- B. B. Adetokun and C. M. Muriithi, “Impact of integrating large-scale DFIG-based wind energy conversion system on the voltage stability of weak national grids: A case study of the Nigerian power grid,” Energy Reports, vol. 7, pp. 654–666, Nov. 2021, doi: https://doi.org/10.1016/j.egyr.2021.01.025
- J. N. da Costa, J. A. Passos Filho, and R. Mota Henriques, “Loading margin sensitivity analysis in systems with significant wind power generation penetration,” Electr. Power Syst. Res., vol. 175, no. June, p. 105900, Oct. 2019, doi: https://doi.org/10.1016/j.epsr.2019.105900
- K. Ren, H. Li, S. Li, and H. Dong, “Voltage Stability Analysis of Front-End Speed Controlled Wind Turbine Integrated into Regional Power Grid Based on Bifurcation Theory,” Complexity, vol. 2020, pp. 1–11, Oct. 2020, doi: https://doi.org/10.1155/2020/8816334
- T. Souxes, I.-M. Granitsas, and C. Vournas, “Effect of stochasticity on voltage stability support provided by wind farms: Application to the Hellenic interconnected system,” Electr. Power Syst. Res., vol. 170, no. January, pp. 48–56, 2019, doi: https://doi.org/10.1016/j.epsr.2019.01.007
- E. A. Feilat, S. Azzam, and A. Al-Salaymeh, “Impact of large PV and wind power plants on voltage and frequency stability of Jordan’s national grid,” Sustain. Cities Soc., vol. 36, no. October 2017, pp. 257–271, 2018, doi: https://doi.org/10.1016/j.scs.2017.10.035
- G. Pierrou and X. Wang, “Analytical Study of the Impacts of Stochastic Load Fluctuation on the Dynamic Voltage Stability Margin Using Bifurcation Theory,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67, no. 4, pp. 1286–1295, Apr. 2020, doi: https://doi.org/10.1109/TCSI.2019.2943509
- B. Qi, K. N. Hasan, and J. V. Milanovic, “Identification of Critical Parameters Affecting Voltage and Angular Stability Considering Load-Renewable Generation Correlations,” IEEE Trans. Power Syst., vol. 34, no. 4, pp. 2859–2869, 2019, doi: https://doi.org/10.1109/TPWRS.2019.2891840
- W. Huang, D. J. Hill, and X. Zhang, “Small-Disturbance Voltage Stability of Power Systems: Dependence on Network Structure,” IEEE Trans. Power Syst., vol. 35, no. 4, pp. 2609–2618, Jul. 2020, doi: https://doi.org/10.1109/TPWRS.2019.2962555
- W. Huang and D. J. Hill, “Network-based analysis of long-term voltage stability considering loads with recovery dynamics,” Int. J. Electr. Power Energy Syst., vol. 119, p. 105891, 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105891
- Z. Zhong, H. Zhang, J. Wang, G. Ma, W. Qiu, and Y. Wang, “Study on Voltage Characteristics of Distributed Power Supply Connected to Distribution Network,” Am. J. Electr. Electron. Eng., vol. 7, no. 4, pp. 99–104, Oct. 2019, doi: https://doi.org/10.12691/ajeee-7-4-3
- M. Ghaffarianfar and A. Hajizadeh, “Voltage Stability of Low-Voltage Distribution Grid with High Penetration of Photovoltaic Power Units,” Energies, vol. 11, no. 8, p. 1960, Jul. 2018, doi: https://doi.org/10.3390/en11081960
- N. B. G. Brinkel et al., “Impact of rapid PV fluctuations on power quality in the low-voltage grid and mitigation strategies using electric vehicles,” Int. J. Electr. Power Energy Syst., vol. 118, no. June 2019, p. 105741, Jun. 2020, doi: https://doi.org/10.1016/j.ijepes.2019.105741
- M. S. Rawat and S. Vadhera, “Impact of Photovoltaic Penetration on Static Voltage Stability of Distribution Networks: A Probabilistic Approach,” Asian J. Water, Environ. Pollut., vol. 15, no. 3, pp. 51–62, Aug. 2018, doi: https://doi.org/10.3233/AJW-180043
- A. S. Saidi, M. Ben Slimene, M. A. Khlifi, M. Fazle Azeem, S. Al Ahmadi, and A. Draou, “Analysis and study of two-dimensional parameter bifurcation of wind power farms and composite loads,” Wind Energy, vol. 22, no. 9, pp. 1243–1259, 2019, doi: https://doi.org/10.1002/we.2353
- V. Behravesh, R. Keypour, and A. A. Foroud, “Stochastic analysis of solar and wind hybrid rooftop generation systems and their impact on voltage behavior in low voltage distribution systems,” Sol. Energy, vol. 166, no. June 2017, pp. 317–333, May 2018, doi: https://doi.org/10.1016/j.solener.2018.03.063
- B. Abdelkader and L. Djamel, “Contribution of DGs in the stability and voltage drop reduction for future MV network in desert regions,” Int. J. Power Electron. Drive Syst., vol. 11, no. 2, p. 977, 2020, doi: https://doi.org/10.11591/ijpeds.v11.i2.pp977-987
- S. Li, Z. Zhou, Q. Shan, and J. An, “Analysis of Transient Voltage Stability in a Low Voltage Distribution Network Using SST for the Integration of Distributed Generations,” J. Electr. Comput. Eng., vol. 2018, pp. 1–9, 2018, doi: https://doi.org/10.1155/2018/3498491
- I. Alvarez-Fernandez et al., “Impact analysis of DERs on bulk power system stability through the parameterization of aggregated DER_a model for real feeders,” Electr. Power Syst. Res., vol. 189, no. July, p. 106822, 2020, doi: https://doi.org/10.1016/j.epsr.2020.106822
- O. B. Adewuyi, R. Shigenobu, T. Senjyu, M. E. Lotfy, and A. M. Howlader, “Multiobjective mix generation planning considering utility-scale solar PV system and voltage stability: Nigerian case study,” Electr. Power Syst. Res., vol. 168, no. May 2018, pp. 269–282, 2019, doi: https://doi.org/10.1016/j.epsr.2018.12.010
- R. Karthikeyan, “Investigation On Voltage Stability of Wind Integrated Power System,” Int. J. Progress. Res. Sci. Eng., no. 6, pp. 102–105, 2020.
- X. Liang, M. N. S. K. Shabbir, N. Khan, and X. Yan, “Measurement-Based Characteristic Curves for Voltage Stability and Control at the Point of Interconnection of Wind Power Plants,” Can. J. Electr. Comput. Eng., vol. 42, no. 3, pp. 163–172, 2019, doi: https://doi.org/10.1109/CJECE.2019.2906007
- A. Rabiee, S. Nikkhah, and A. Soroudi, “Information gap decision theory to deal with long-term wind energy planning considering voltage stability,” Energy, vol. 147, pp. 451–463, 2018, doi: https://doi.org/10.1016/j.energy.2018.01.061
- B. Qin, H. Li, X. Zhang, T. Ding, K. Ma, and S. Mei, “Quantitative short‐term voltage stability analysis of power systems integrated with DFIG‐based wind farms,” IET Gener. Transm. Distrib., vol. 14, no. 19, pp. 4264–4272, 2020, doi: https://doi.org/10.1049/iet-gtd.2019.1701
- M. Baa Wafaa and L. Dessaint, “Approach to dynamic voltage stability analysis for DFIG wind parks integration,” IET Renew. Power Gener., vol. 12, no. 2, pp. 190–197, Feb. 2018, doi: https://doi.org/10.1049/iet-rpg.2016.0482
- M. R. Monteiro, Y. R. Rodrigues, M. Abdelaziz, A. C. Z. de Souza, and L. Wang, “New technique for area-based voltage stability support using flexible resources,” Electr. Power Syst. Res., vol. 186, no. April, p. 106384, Sep. 2020, doi: https://doi.org/10.1016/j.epsr.2020.106384
- B. B. Adetokun, J. O. Ojo, and C. M. Muriithi, “Reactive Power-Voltage-Based Voltage Instability Sensitivity Indices for Power Grid With Increasing Renewable Energy Penetration,” IEEE Access, vol. 8, pp. 85401–85410, 2020, doi: https://doi.org/10.1109/ACCESS.2020.2992194
- H. Marzooghi, M. Garmroodi, G. Verbic, A. S. Ahmadyar, R. Liu, and D. J. Hill, “Scenario and Sensitivity Based Stability Analysis of the High Renewable Future Grid,” IEEE Trans. Power Syst., vol. 37, no. 4, pp. 3238–3248, Jul. 2022, doi: https://doi.org/10.1109/TPWRS.2020.2999070
- M. S. Rawat and S. Vadhera, “Probabilistic Steady State Voltage Stability Assessment Method for Correlated Wind Energy and Solar Photovoltaic Integrated Power Systems,” Energy Technol., vol. 9, no. 2, p. 2000732, Feb. 2021, doi: https://doi.org/10.1002/ente.202000732
- L. Van Dai, N. Minh Khoa, and L. Cao Quyen, “An Innovatory Method Based on Continuation Power Flow to Analyze Power System Voltage Stability with Distributed Generation Penetration,” Complexity, vol. 2020, pp. 1–15, Sep. 2020, doi: https://doi.org/10.1155/2020/8037837
- S. Lin, Y. Lu, M. Liu, Y. Yang, S. He, H. Jiang, “SVSM calculation of power system with high wind‐power penetration,” IET Renew. Power Gener., vol. 13, no. 8, pp. 1391–1401, Jun. 2019, doi: https://doi.org/10.1049/iet-rpg.2018.6144
- A. Sajadi, K. Clark, and K. A. Loparo, “Statistical Steady-State Stability Analysis for Transmission System Planning for Offshore Wind Power Plant Integration,” Clean Technol., vol. 2, no. 3, pp. 311–332, Aug. 2020, doi: https://doi.org/10.3390/cleantechnol2030020
- R. Ma, X. Li, W. Gao, P. Lu, and T. Wang, “Random-Fuzzy Chance-Constrained Programming Optimal Power Flow of Wind Integrated Power Considering Voltage Stability,” IEEE Access, vol. 8, pp. 217957–217966, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3040382
- A. Gholizadeh, A. Rabiee, and R. Fadaeinedjad, “A scenario-based voltage stability constrained planning model for integration of large-scale wind farms,” Int. J. Electr. Power Energy Syst., vol. 105, 2018, pp. 564–580, Feb. 2019, doi: https://doi.org/10.1016/j.ijepes.2018.09.002
- M. Jadidbonab, M. J. Vahid-Pakdel, H. Seyedi, and B. Mohammadi-ivatloo, “Stochastic assessment and enhancement of voltage stability in multi carrier energy systems considering wind power,” Int. J. Electr. Power Energy Syst., vol. 106, no. May 2018, pp. 572–584, 2019, doi: https://doi.org/10.1016/j.ijepes.2018.10.028
- M. Ghaljehei, A. Ahmadian, M. A. Golkar, T. Amraee, and A. Elkamel, “Stochastic SCUC considering compressed air energy storage and wind power generation: A techno-economic approach with static voltage stability analysis,” Int. J. Electr. Power Energy Syst., vol. 100, no. March, pp. 489–507, Sep. 2018, doi: https://doi.org/10.1016/j.ijepes.2018.02.046
- X. He, H. Geng, and G. Mu, “Modeling of wind turbine generators for power system stability studies: A review,” Renew. Sustain. Energy Rev., vol. 143, no. January, p. 110865, Jun. 2021, doi: https://doi.org/10.1016/j.rser.2021.110865
- J. Zhang et al., “A Probabilistic Assessment Method for Voltage Stability Considering Large Scale Correlated Stochastic Variables,” IEEE Access, vol. 8, pp. 5407–5415, 2020, doi: https://doi.org/10.1109/ACCESS.2019.2963280
- X. Xu, Z. Yan, M. Shahidehpour, H. Wang, and S. Chen, “Power System Voltage Stability Evaluation Considering Renewable Energy With Correlated Variabilities,” IEEE Trans. Power Syst., vol. 33, no. 3, pp. 3236–3245, May 2018, doi: https://doi.org/10.1109/TPWRS.2017.2784812
- J. Shukla, B. K. Panigrahi, and P. K. Ray, “Stochastic reconfiguration of distribution system considering stability, correlated loads and renewable energy based DGs with varying penetration,” Sustain. Energy, Grids Networks, vol. 23, p. 100366, Sep. 2020, doi: https://doi.org/10.1016/j.segan.2020.100366
- C. Shuai, Y. Deyou, G. Weichun, L. Chuang, C. Guowei, and K. Lei, “Global sensitivity analysis of voltage stability in the power system with correlated renewable energy,” Electr. Power Syst. Res., vol. 192, no. October 2020, p. 106916, Mar. 2021, doi: https://doi.org/10.1016/j.epsr.2020.106916
- F. Alsokhiry, G. P. Adam, and Y. Al-Turki, “Limitations of voltage source converter in weak ac networks from voltage stability point of view,” Int. J. Electr. Power Energy Syst., vol. 119, no. September 2019, p. 105899, Jul. 2020, doi: https://doi.org/10.1016/j.ijepes.2020.105899
- C. Li, Y. Yang, Y. Cao, L. Wang, and F. Blaabjerg, “Frequency and Voltage Stability Analysis of Grid-Forming Virtual Synchronous Generator Attached to Weak Grid,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 10, no. 3, pp. 2662–2671, Jun. 2022, doi: https://doi.org/10.1109/JESTPE.2020.3041698
- A. S. Saidi, “Investigation of Structural Voltage Stability in Tunisian Distribution Networks Integrating Large-Scale Solar Photovoltaic Power Plant,” Int. J. Bifurc. Chaos, vol. 30, no. 13, p. 2050259, Oct. 2020, doi: https://doi.org/10.1142/S0218127420502594
- J. H. Braslavsky, L. D. Collins, and J. K. Ward, “Voltage Stability in a Grid-Connected Inverter With Automatic Volt-Watt and Volt-VAR Functions,” IEEE Trans. Smart Grid, vol. 10, no. 1, pp. 84–94, Jan. 2019, doi: https://doi.org/10.1109/TSG.2017.2732000
- M. Katsanevakis, R. A. Stewart, and L. Junwei, “A novel voltage stability and quality index demonstrated on a low voltage distribution network with multifunctional energy storage systems,” Electr. Power Syst. Res., vol. 171, no. January, pp. 264–282, Jun. 2019, doi: https://doi.org/10.1016/j.epsr.2019.01.043
- M. Islam, M. Nadarajah, and M. J. Hossain, “Dynamic voltage stability of unbalanced DNs with high penetration of roof-top PV units,” Int. Trans. Electr. Energy Syst., vol. 30, no. 12, pp. 1–26, Dec. 2020, doi: https://doi.org/10.1002/2050-7038.12631
- J. Yaghoobi, M. Islam, and N. Mithulananthan, “Analytical approach to assess the loadability of unbalanced distribution grid with rooftop PV units,” Appl. Energy, vol. 211, no. December 2015, pp. 358–367, Feb. 2018, doi: https://doi.org/10.1016/j.apenergy.2017.11.030
- A. Traupmann, M. Greiml, and T. Kienberger, “Reduction method for planning cross-energy carrier networks in the cellular approach applicable for stability assessment in low-voltage networks,” e i Elektrotechnik und Informationstechnik, vol. 137, no. 8, pp. 509–514, Dec. 2020, doi: https://doi.org/10.1007/s00502-020-00851-4
- M. Sarkar, A. D. Hansen, and P. E. Sørensen, “Quantifying robustness of Type 4 wind power plant as reactive power source,” Int. J. Electr. Power Energy Syst., vol. 122, no. April, p. 106181, Nov. 2020, doi: https://doi.org/10.1016/j.ijepes.2020.106181
- M. T. Kenari, M. S. Sepasian, and M. S. Nazar, “Probabilistic assessment of static voltage stability in distribution systems considering wind generation using catastrophe theory,” IET Gener. Transm. Distrib., vol. 13, no. 13, pp. 2856–2865, 2019, doi: https://doi.org/10.1049/iet-gtd.2018.5497
- M. Tourandaz Kenari, M. S. Sepasian, and M. Setayesh Nazar, “Probabilistic voltage stability assessment of distribution networks with wind generation using combined cumulants and maximum entropy method,” Int. J. Electr. Power Energy Syst., vol. 95, pp. 96–107, 2018, doi: https://doi.org/10.1016/j.ijepes.2017.08.011
- H. Lotfi, A. A. Shojaei, V. Kouhdaragh, and I. Sadegh Amiri, “The impact of feeder reconfiguration on automated distribution network with respect to resilience concept,” SN Appl. Sci., vol. 2, no. 9, p. 1590, 2020, doi: https://doi.org/10.1007/s42452-020-03429-z
- Y. Song, D. J. Hill, T. Liu, “Static Voltage Stability Analysis of Distribution Systems Based on Network-Load Admittance Ratio,” IEEE Trans. Power Syst., vol. 34, no. 3, pp. 2270–2280, 2019, doi: https://doi.org/10.1109/TPWRS.2018.2886636
- H. Wu, P. Dong, and M. Liu, “Distribution Network Reconfiguration for Loss Reduction and Voltage Stability With Random Fuzzy Uncertainties of Renewable Energy Generation and Load,” IEEE Trans. Ind. Informatics, vol. 16, no. 9, pp. 5655–5666, 2020, doi: https://doi.org/10.1109/TII.2018.2871551
- M. S. Rawat and S. Vadhera, “Probabilistic Approach to Determine Penetration of Hybrid Renewable DGs in Distribution Network Based on Voltage Stability Index,” Arab. J. Sci. Eng., vol. 45, no. 3, pp. 1473–1498, 2020, doi: https://doi.org/10.1007/s13369-019-04023-1
- H. Sheng and X. Wang, “Applying Polynomial Chaos Expansion to Assess Probabilistic Available Delivery Capability for Distribution Networks With Renewables,” IEEE Trans. Power Syst., vol. 33, no. 6, pp. 6726–6735, 2018.