Vol. 21 Núm. 4 (2022): Revista UIS Ingenierías
Artículos

Procesos de fabricación, análisis del ciclo de vida y retos futuros en los alabes de turbinas eólicas

Andrés Olivera-Castillo
Universidad de Antioquia
Edwin Chica-Arrieta
Universidad de Antioquia
Henry Colorado-Lopera
Universidad de Antioquia
3D

Publicado 2022-10-20

Palabras clave

  • Alabes de aerogeneradores,
  • procesos de fabricación de palas,
  • reciclaje,
  • reutilización y análisis de evaluación del ciclo de vida de alabes de turbinas,
  • políticas de energías renovable

Cómo citar

Olivera-Castillo, A. ., Chica-Arrieta, E. ., & Colorado-Lopera , H. (2022). Procesos de fabricación, análisis del ciclo de vida y retos futuros en los alabes de turbinas eólicas. Revista UIS Ingenierías, 21(4), 15–28. https://doi.org/10.18273/revuin.v21n4-2022002

Resumen

Los aerogeneradores obtienen energía limpia del viento, sin embargo, existe una significativa afectación ambiental por el uso de algunos de sus materiales. Este articulo analiza la manufactura, el ciclo de vida y desmantelado de estas máquinas, para entender nuevas oportunidades para mejorar esos aspectos negativos, por medio de la revisión de diversos artículos. La búsqueda se centró en artículos SCOPUS, usando la palabra “aerogenerador” en títulos, resúmenes y palabras clave, obteniendo 68.362 resultados. Posteriormente, estos resultados fueron filtrados únicamente artículos, reseñas y tesis de investigación, redujendo la búsqueda a 3.663 resultados, la búsqueda se limitó a tan solo 10 años, contando de 2020 a 2010, alcanzando los 2.189 documentos. Se realiza el análisis de 2.189 documentos obtenidos, redujendo la base literaria a 185 documentos con información de procesos de fabricación, análisis de ciclo de vida y avances de algunos países en la implementación de mejoras en la fabricación de aerogeneradores, para reducir el impacto ambiental. El uso de materiales termoendurecibles en alabes de aerogeneradores es una realidad que debe ser modificada por los problemas ambientales que estos están provocando, los nuevos materiales para alabes deben desarrollarse de acuerdo con los principios de la economía circula

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. “Objetivos de Desarrollo Sostenible,” Organización de las Naciones Unidas, 2022. [Online]. Available: https://www.un.org/sustainabledevelopment/es/objetivos-de-desarrollo-sostenible/
  2. S. Ratner, K. Gomonov, S. Revinova, I. Lazanyuk, “Eco-Design of Energy Production Systems: The Problem of Renewable Energy Capacity Recycling,” Appl. Sci., vol. 10, no. 12, p. 4339, 2020, doi: http://doi.org/10http://doi.org/1010.3390/app10124339
  3. H. Albers, S. Greiner, H. Seifert, U. Kuehne, “Recycling of wind turbine rotor blades. Fact or fiction?; Recycling von Rotorblaettern aus Windenergieanlagen. Fakt oder Fiktion?,” DEWI-Magazin, no. 34, pp. 32–41, 2009.
  4. “Renewables 2020 Global Status Report,” Renewable Energy Policy Network for the 21st Century, 2020. [Online]. Available: https://www.ren21.net/gsr-2020/
  5. M.-S. Wu, B. C. Jin, X. Li, S. Nutt, “A recyclable epoxy for composite wind turbine blades,” Adv. Manuf. Polym. Compos. Sci., vol. 5, no. 3, pp. 114–127, 2019, doi: http://doi.org/1010.1080/20550340.2019.1639967
  6. J. Flizikowski, K. Bielinski, Technology and Energy Sources Monitoring: control, efficiency and optimization. IGI Global, 2013.
  7. D. Fraile, A. Mbistrova, I. Pineda, P. Tardieu, L. Miró, “Wind in power 2017: Annual combined onshore and offshore wind energy statistics,” Wind. Brussels, Belgium, p. 25, 2018.
  8. K. R. Haapala, P. Prempreeda, “Comparative life cycle assessment of 2.0 MW wind turbines,” Int. J. Sustain. Manuf., vol. 3, no. 2, p. 170, 2014, doi: http://doi.org/1010.1504/IJSM.2014.062496
  9. N. Tazi, E. Châtelet, Y. Bouzidi, “Using a Hybrid Cost-FMEA Analysis for Wind Turbine Reliability Analysis,” Energies, vol. 10, no. 3, p. 276, 2017, doi: http://doi.org/1010.3390/en10030276
  10. , “Global Wind Report”, Global Wind Energy Council, 2015.
  11. A. Rashedi, I. Sridhar, K.J. Tseng, “Multi-objective material selection for WTB and tower: Ashby’s approach,” Mater. Des., vol. 37, no. 5, pp. 521–32, 2012.
  12. G. Adolphs, C. Skinner, “Manufacturing, properties and applications, A volume in WHPS in composites science and engineering,” L. SV, Ed. 2011, pp. 48–493.
  13. J. Bai, “Advanced fibre-reinforced polymer (FRP) composites materials for sustainable energy technologies,” in Advanced fibre-reinforced polymer (FRP) composites for structural applications, Cambridge: Woodhead Publishing Limited, 2013, pp. 737–779.
  14. A. Tomporowski et al., “Comparison Analysis of Blade Life Cycles of Land-Based and Offshore Wind Power Plants,” Polish Marit. Res., vol. 25, no. s1, pp. 225–233, 2018, doi: http://doi.org/1010.2478/pomr-2018-0046
  15. M. R. Patel, O. Beik, Wind and Solar Power Systems: Design, Analysis, and Operation. 3rd ed. Boca Raton: CRC press, 2021.
  16. L. Mishnaevsky, K. Branner, H. Petersen, J. Beauson, M. McGugan, B. Sørensen, “Materials for Wind Turbine Blades: An Overview,” Materials (Basel), vol. 10, no. 11, p. 1285, 2017, doi: http://doi.org/1010.3390/ma10111285
  17. P. Brøndsted, H. Lilholt, A. Lystrup, “Composite materials for wind power turbine blades,” Annu. Rev. Mater. Res., vol. 35, pp. 505–538, 2005.
  18. L. Mishnaevsky, P. Brøndsted, “Statistical modelling of compression and fatigue damage of unidirectional fiber reinforced composites,” Compos. Sci. Technol., vol. 69, no. 3–4, pp. 477–484, 2009.
  19. J. A. Grand, “Wind power blades energize composites manufacturing,” Plast. Technol., vol. 54, no. 10, 2008.
  20. H. Haberkern, “Tailor-made reinforcements,” Reinf. Plast., vol. 50, no. 4, pp. 28–33, 2006, doi: http://doi.org/10https://doi.org/10.1016/S0034-3617(06)70974-2
  21. J. W. Holmes, B. F. Sørensen, P. Brøndsted, “Reliability of wind turbine blades: An overview of materials testing,” Proc. Wind Power Shanghai, vol. 35, p. 36, 2007.
  22. J. W. Holmes, P. Brøndsted, B. F. Sørensen, Z. Jiang, Z. Sun, X. Chen, “Development of a Bamboo-Based Composite as a Sustainable Green Material for Wind Turbine Blades,” Wind Eng., vol. 33, no. 2, pp. 197–210, Mar. 2009, doi: http://doi.org/1010.1260/030952409789141053
  23. R. P. L. Nijssen, Fatigue life prediction and strength degradation of wind turbine rotor blade composites, 2006.
  24. S. Joncas, “Thermoplastic composite wind turbine blades: An integrated design approach,” doctoral thesis, Université du Québec, 2010.
  25. A. Lystrup, T. Andersen, H. Knudsen, T. Vestergaard, L. Lilleheden, J. Vestergaard, Summary of Technical Results; Final Report for MUP2 Framework Program. Roskilde: Risø National Laboratory, 2010.
  26. R. T. Durai Prabhakaran, “Are Reactive Thermoplastic Polymers Suitable for Future Wind Turbine Composite Materials Blades?,” Mech. Adv. Mater. Struct., vol. 21, no. 3, pp. 213–221, 2014, doi: http://doi.org/1010.1080/15376494.2013.834090
  27. K. V. Kumar, M. Safiulla, A. N. K. Ahmed, “An experimental evaluation of fiber reinforced polypropylene thermoplastics for aerospace applications,” J. Mech. Eng., vol. 43, no. 2, pp. 92–97, Feb. 2014, doi: http://doi.org/1010.3329/jme.v43i2.17832
  28. L. Thomas, M. Ramachandra, “Advanced materials for wind turbine blade- A Review,” Mater. Today Proc., vol. 5, no. 1, pp. 2635–2640, 2018, doi: http://doi.org/1010.1016/j.matpr.2018.01.043
  29. J. Yang, “Carbon Nanotubes Reinforced Composites for Wind Turbine Blades,” thesis,Case Western Reserve University, 2012.
  30. K. Van Rijswijk, “Thermoplastic Composite Wind Turbine Blades,” Technical University Of Delft, 2007.
  31. M. Loos, J. Yang, D. Feke, I. Manas-Zloczower, “Carbon nanotube-reinforced epoxy composites for wind turbine blades. Plast. Res.” Online, 2012.
  32. P. Bortolotti, “Carbon glass hybrid materials for wind turbine rotor blades,” Delft University of Technology, 2012.
  33. R. Stewart, “Wind turbine blade production – new products keep pace as scale increases,” Reinf. Plast., vol. 56, no. 1, pp. 18–25, 2012, doi: http://doi.org/1010.1016/S0034-3617(12)70033-4
  34. P. Brøndsted, H. H. Lilholt, A. Lystrup, “Composite Materials for Wind Power Turbine Blades,” Annu. Rev. Mater. Res., vol. 35, pp. 505–538, 2010.
  35. K. Smith, “WindPACT Turbine Design Scaling Studies Technical Area 2: Turbine, Rotor and Blade Logistics,” Golden, CO (United States), Jul. 2001. doi: http://doi.org/1010.2172/785133
  36. J. Garate, S. A. Solovitz, D. Kim, “Fabrication and Performance of Segmented Thermoplastic Composite Wind Turbine Blades,” Int. J. Precis. Eng. Manuf. Technol., vol. 5, no. 2, pp. 271–277, 2018, doi: http://doi.org/1010.1007/s40684-018-0028-3
  37. K. Bassett, R. Carriveau, D. S.-K. Ting, “3D printed wind turbines part 1: Design considerations and rapid manufacture potential,” Sustain. Energy Technol. Assessments, vol. 11, pp. 186–193, 2015, doi: http://doi.org/1010.1016/j.seta.2015.01.002
  38. X. Duan, “Application of three-dimensional printing technology in the manufacture of wind turbine generator equipment,” Chem. Eng. Trans., vol. 62, pp. 1153–1158, 2017, doi: http://doi.org/10https://doi.org/10.3303/CET1762193
  39. A. Rafiee, P. Van der Male, E. Dias, H. Scholten, “Interactive 3D geodesign tool for multidisciplinary wind turbine planning,” J. Environ. Manage., vol. 205, pp. 107–124, 2018, doi: http://doi.org/1010.1016/j.jenvman.2017.09.042
  40. J. Jonkman and W. Musial, “IEA wind task 23 offshore wind technology and deployment,” Citeseer, Golden, CO (United States), 2010.
  41. D. Roddier, C. Cermelli, A. Aubault, A. Weinstein, “WindFloat: A floating foundation for offshore wind turbines,” J. Renew. Sustain. Energy, vol. 2, no. 3, p. 033104, 2010, doi: http://doi.org/1010.1063/1.3435339
  42. M. J. Fowler, R. W. Kimball, D. A. Thomas, A. J. Goupee, “Design and Testing of Scale Model Wind Turbines for Use in Wind/Wave Basin Model Tests of Floating Offshore Wind Turbines,” 2013, doi: http://doi.org/1010.1115/OMAE2013-10122
  43. “Special Report on Renewable Energy Sources and Climate Change Mitigation in Prepared by Working Group III of the Intergovernmental Panel on Climate Change,” IPCC, Cambridge, 2011.
  44. F. Fatma, F. Hached, K. Jallouli, M. Charfeddine, Y. Syrine, “Recyclage Des Matériaux Composites,” 2014, [Online]. Available: http://fr.slideshare.net/khawkhitajellouli/presentation-opo-final.
  45. M. Rapin, J. M. Noel, Wind energy. From small wind turbines to offshore wind farms; L’energie eolienne. Du petit eolien a l’eolien offshore, 2014.
  46. A. Arvesen, E. G. Hertwich, “Assessing the life cycle environmental impacts of wind power: A review of present knowledge and research needs,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 5994–6006, 2012, doi: http://doi.org/1010.1016/j.rser.2012.06.023
  47. A. Lefeuvre, S. Garnier, L. Jacquemin, B. Pillain, G. Sonnemann, “Anticipating in-use stocks of carbon fiber reinforced polymers and related waste flows generated by the commercial aeronautical sector until 2050,” Resour. Conserv. Recycl., vol. 125, pp. 264–272, 2017, doi: http://doi.org/1010.1016/j.resconrec.2017.06.023
  48. Y. M. Lee, Y.-E. Tzeng, C. L. Su, “Life cycle assessment of wind power utilization in Taiwan,” in The 7th International Conference on Eco Balance, 2006, p. 4, [Online]. Available: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.578.1529&rep=rep1&type=pdf.
  49. J. Chen, J. Wang, A. Ni, “Recycling and reuse of composite materials for wind turbine blades: An overview,” J. Reinf. Plast. Compos., vol. 38, no. 12, pp. 567–577, 2019, doi: http://doi.org/1010.1177/0731684419833470
  50. M. C. S. Ribeiro et al., “Re-use assessment of thermoset composite wastes as aggregate and filler replacement for concrete-polymer composite materials: A case study regarding GFRP pultrusion wastes,” Resour. Conserv. Recycl., vol. 104, pp. 417–426, 2015, doi: http://doi.org/1010.1016/j.resconrec.2013.10.001
  51. A. Yazdanbakhsh, L. C. Bank, K.-A. Rieder, Y. Tian, C. Chen, “Concrete with discrete slender elements from mechanically recycled wind turbine blades,” Resour. Conserv. Recycl., vol. 128, pp. 11–21, 2018, doi: http://doi.org/1010.1016/j.resconrec.2017.08.005
  52. A. Rahimizadeh, J. Kalman, K. Fayazbakhsh, L. Lessard, “Recycling of fiberglass wind turbine blades into reinforced filaments for use in Additive Manufacturing,” Compos. Part B Eng., vol. 175, p. 107101, 2019, doi: http://doi.org/1010.1016/j.compositesb.2019.107101
  53. L. Mazzocchetti, T. Benelli, E. D’Angelo, C. Leonardi, G. Zattini, L. Giorgini, “Validation of carbon fibers recycling by pyro-gasification: The influence of oxidation conditions to obtain clean fibers and promote fiber/matrix adhesion in epoxy composites,” Compos. Part A Appl. Sci. Manuf., vol. 112, pp. 504–514, 2018, doi: http://doi.org/1010.1016/j.compositesa.2018.07.007
  54. K. Lewandowski, K. Skórczewska, K. Piszczek, W. Urbaniak, “Recycled Glass Fibres from Wind Turbines as a Filler for Poly(Vinyl Chloride),” Adv. Polym. Technol., vol. 2019, pp. 1–11, 2019, doi: http://doi.org/1010.1155/2019/8960503
  55. E. W. E. Association and others, “Research note outline on recycling wind turbines blades,” Brussels, 2019.
  56. C. Psomopoulos, K. Kalkanis, S. Kaminaris, G. Ioannidis, P. Pachos, “A Review of the Potential for the Recovery of Wind Turbine Blade Waste Materials,” Recycling, vol. 4, no. 1, p. 7, 2019, doi: http://doi.org/1010.3390/recycling4010007
  57. J. Beauson, P. Brøndsted, “Wind Turbine Blades: An End of Life Perspective,” in MARE-WINT, Cham: Springer International Publishing, 2016, pp. 421–432.
  58. J. P. Jensen, K. Skelton, “Wind turbine blade recycling: Experiences, challenges and possibilities in a circular economy,” Renew. Sustain. Energy Rev., vol. 97, pp. 165–176, 2018, doi: http://doi.org/1010.1016/j.rser.2018.08.041
  59. P. Liu, F. Meng, C. Y. Barlow, “Wind turbine blade end-of-life options: An eco-audit comparison,” J. Clean. Prod., vol. 212, pp. 1268–1281, 2019, doi: http://doi.org/1010.1016/j.jclepro.2018.12.043
  60. T. Poulsen, R. Lema, “Is the supply chain ready for the green transformation? The case of offshore wind logistics,” Renew. Sustain. Energy Rev., vol. 73, pp. 758–771, 2017, doi: http://doi.org/1010.1016/j.rser.2017.01.181
  61. C. G. Gil, “Objetivos de Desarrollo Sostenible (ODS): una revisión crítica,” Papeles Relac. ecosociales y cambio Glob., vol. 140, pp. 107–118, 2018.
  62. A. Muliro, “ODS7 Gobernar con rumbo a la Energía Sostenible para Todos,” Soc. Int. Dev., vol. 1, pp. 1–7, 2018.
  63. “Informe de los Objetivos de Desarrollo Sostenible,” Naciones Unidas 2020.
  64. L. Junseng, “Renewable Energy Policy in China: Overview,” Natl. Renew. Energy Lab., vol. 2, pp. 1–2, 2014.
  65. Xinhua, “China to optimize subsidy policies on renewable energy generation,” 2020. http://www.xinhuanet.com/english/2020-02/03/c_138753234.htm.
  66. J. Ye, T. Fues, “A strong voice for global sustainable development: How China can play a leading role in the post-2015 agenda,” Bonn, 2014.
  67. Navigant Research, “World wind energy market update 2015,” 2015.
  68. Z. Hu, J. Wang, J. Byrne, L. Kurdgelashvili, “Review of wind power tariff policies in China,” Energy Policy, vol. 53, pp. 41–50, 2013, doi: http://doi.org/1010.1016/j.enpol.2012.09.057
  69. L. Hong and B. Möller, “Feasibility study of China’s offshore wind target by 2020,” Energy, vol. 48, no. 1, pp. 268–277, 2012, doi: http://doi.org/1010.1016/j.energy.2012.03.016
  70. “The September 10, 2014 decision to add RMB 0,2/KWh on top of the national FIT,” Shanghai Municipal Government http://www.carbontrust.com/news/2014/09/china-offshore-wind
  71. “Funding and Financial Incentive Policies,” EPA Energy and Environment Guide to Action, 2015.
  72. S. Kota, S. B. Bayne, S. Nimmagadda, “Offshore wind energy: A comparative analysis of UK, USA and India,” Renew. Sustain. Energy Rev., vol. 41, pp. 685–694, 2015, doi: http://doi.org/1010.1016/j.rser.2014.08.080
  73. “IRENA - International Renewable Energy Agency,” 2020. https://www.irena.org/europe.
  74. W. McDowall, P. Ekins, S. Radošević, L. Zhang, “The development of wind power in China, Europe and the USA: how have policies and innovation system activities co-evolved?,” Technol. Anal. Strateg. Manag., vol. 25, no. 2, pp. 163–185, 2013, doi: http://doi.org/1010.1080/09537325.2012.759204
  75. A. Gray, “Sweden to reach its 2030 renewable energy target this year.” https://www.weforum.org/agenda/2018/07/sweden-to-reach-its-2030-renewable-energy-target-this-year/
  76. “Wind Power takes flight in Denmark Denmark’s renewable energy policies,” Danish Energy Agency.
  77. “Energy Policy Review,” Agencia Internacional de Energía, https://www.iea.org/reports/european-union-2020.
  78. J. Hill, “Spain approves push for 100% renewables, bans all new fossil fuel projects,” 2020. https://reneweconomy.com.au/spain-approves-push-for-100-renewables-bans-all-new-fossil-fuel-projects-63494/
  79. “Germany renewable energy prospects: A renewable Energy Roadmap,” IRENA, pp. 1–143, 2015.
  80. “Cinco países con las políticas de energía y medio ambiente más avanzadas,” ACNUR Comité Español, 2018. https://eacnur.org/blog/energia-y-medio-ambiente-5-paises-con-las-politicas-mas-avanzadas-tc_alt45664n_o_pstn_o_pst/
  81. “Ley 1715 de 2014,” Ministro de Minas y Energía, 2014.
  82. “Global wind report. Annual market update 2019,” Global Wind Energy Council, 2019.