Selección de un convertidor de energía de las olas de tipo oscilante y un sistema de toma de fuerza para el aprovechamiento de la energía undimotriz de Colombia
Publicado 2023-06-13
Palabras clave
- convertidor undimotriz,
- convertidor undimotriz tipo oscilante,
- sistema de toma de fuerza,
- PTO,
- WEC
- OWSC ...Más
Cómo citar
Derechos de autor 2023 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
Los dispositivos de generación undimotriz son dispositivos que se encargan de transformar la energía proveniente de las olas del mar en energía eléctrica. Los sistemas de toma de fuerza se caracterizan por tomar la energía mecánica obtenida mediante el dispositivo undimotriz y facilitar su conversión a energía eléctrica. En este trabajo, inicialmente se realizó una búsqueda y evaluación de los dispositivos tipo oscilantes convertidores de energía de las olas y sistemas de toma de fuerza disponibles en la literatura para identificar su ventajas y desventajas con el fin de seleccionar los sistemas más indicados para el aprovechamiento del recurso undimotriz de Colombia. Los sistemas seleccionados corresponden a dispositivos undimotriz acoplados a estructuras fijas a la costa y sistemas de toma mecánica directa debido a que, estos presentan mayores ventajas en cuanto a su proceso de fabricación, puesta a punto, operación y mantenimiento. Finalmente se presenta un diagrama de flujo del proceso de diseño de estos sistemas.
Descargas
Referencias
- H. E. Murdock, D. Gibb, T. André, J. L. Sawin, A. Brown, L. Ranalder, U. Collier, C. Dent, B. Epp, C. Hareesh Kumar et al., “Renewables 2021-global status report,” 2021.
- “Data & Statistics - IEA.” [En línea]. Disponible en: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energysupply&indicator=TESbySource
- World Meteorological Organization, “Wmo greenhouse gas bulletin,” World Meteorological Organization: Geneva, Switzerland, 2021. [En línea]. Disponible en: https://public.wmo.int/en/greenhouse-gas-bulletin#:~:text=WMO's%20Greenhouse%20Gas%20Bulletin%20reported,biological%20and%20human%2Dinduced%20processes.
- Q. Tu, J. Mo, R. Betz, L. Cui, Y. Fan, Y. Liu, “Achieving grid parity of solar pv power in china-the role of tradable green certificate,” Energy Policy, vol. 144, p. 111681, 2020, doi: https://doi.org/10.1016/j.enpol.2020.111681
- P. Dato, “Investment in energy efficiency, adoption of renewable energy and household behavior: Evidence from oecd countries,” The Energy Journal, vol. 39, no. 3, 2018, doi: https://www.jstor.org/stable/26534449
- P. Sun, B. Xu, J. Wang, “Long-term trend analysis and wave energy assessment based on era5 wave reanalysis along the chinese coastline,” Applied Energy, vol. 324, p. 119709, 2022, doi: https://doi.org/10.1016/j.apenergy.2022.119709
- K. Gunn, C. Stock-Williams, “Quantifying the global wave power resource,” Renewable Energy, vol. 44, pp. 296–304, 2012, doi: https://doi.org/10.1016/j.renene.2012.01.101
- I. López, J. Andreu, S. Ceballos, I. M. De Alegría, I. Kortabarria, “Review of wave energy technologies and the necessary powerequipment,” Renewable and sustainable energy reviews, vol. 27, pp. 413–434, 2013, doi: https://doi.org/10.1016/j.rser.2013.07.009
- “Energía del océano.” [En línea]. Disponible en: https://www.irena.org/ocean
- “Wave developers: EMEC: European Marine Energy Centre.” [En línea]. Disponible en: https://www.emec.org.uk/marine-energy/wave-developers/
- X. Zhang, J. Yang, “Power capture performance of an oscillating-body wec with nonlinear snap through pto systems in irregular waves,” Applied Ocean Research, vol. 52, pp. 261– 273, 2015, doi: https://doi.org/10.1016/j.apor.2015.06.012
- R. Ahamed, K. McKee, I. Howard, “Advancements of wave energy converters based on power take off (pto) systems: A review,” Ocean Engineering, vol. 204, p. 107248, 2020.
- A. Henry, O. Kimmoun, J. Nicholson, G. Dupont, Y. Wei, F. Dias, “A two dimensional experimental investigation of slamming of an oscillating wave surge converter,” in The Twenty-fourth International Ocean and Polar Engineering Conference, OnePetro, 2014.
- E. Renzi, F. Dias, “Resonant behaviour of an oscillating wave energy converter in a channel,” Journal of Fluid Mechanics, vol. 701, pp. 482– 510, 2012. https://doi.org/10.1017/jfm.2012.194
- B. Sorensen, Renewable energy conversion, transmission and storage. Elsevier, 2007, doi: https://doi.org/10.1016/B978-0-12-374262-9.X5001-0
- A. Têtu, “Power take-off systems for wecs,” in Handbook of ocean wave energy. Springer, Cham, 2017, pp. 203–220, doi: https://doi.org/10.1007/978-3-319-39889-1_8
- H. Nguyen, C. Wang, Z. Tay, V. Luong, “Wave energy converter and large floating platform integration: A review,” Ocean Engineering, vol. 213, p. 107768, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.107768
- O. M. Mazzaretto, F. Lucero, G. Besio, R. Cienfuegos, “Perspectives for harnessing the energetic persistent high swells reaching the coast of Chile,” Renewable Energy, vol. 159, pp. 494–505, 2020, doi: https://doi.org/10.1016/j.renene.2020.05.031
- E. Renzi and F. Dias, “Hydrodynamics of the oscillating wave surge converter in the open ocean,” European Journal of Mechanics-B/Fluids, vol. 41, pp. 1–10, 2013, doi: https://doi.org/10.1016/j.euromechflu.2013.01.007
- W. Ni, X. Zhang, W. Zhang, S. Liang, “Numerical investigation of adaptive damping control for raft-type wave energy converters,” Renewable Energy, vol. 175, pp. 520–531, 2021, doi: https://doi.org/10.1016/j.renene.2021.04.128
- F. d. O. Antonio, “Wave energy utilization: A review of the technologies,” Renewable and sustainable energy reviews, vol. 14, no. 3, pp. 899–918, 2010, doi: https://doi.org/10.1016/j.rser.2009.11.003
- A. Albert, G. Berselli, L. Bruzzone, P. Fanghella, “Mechanical design and simulation of an onshore four-bar wave energy converter,” Renewable Energy, vol. 114, pp. 766–774, 2017, doi: https://doi.org/10.1016/j.renene.2017.07.089
- A. Zhao, W. Wu, Z. Sun, L. Zhu, K. Lu, H. Chung, F. Blaabjerg, “A flower pollination method based global maximum power point tracking strategy for point-absorbing type wave energy converters,” Energies, vol. 12, no. 7, p. 1343, 2019, doi: https://doi.org/10.3390/en12071343
- M. Güney, “Wave energy conversion systems,” Journal of Naval Sciences and Engineering, vol. 11, no. 2, pp. 25 – 51, 2016.
- C. Windt, J. Davidson, J. V. Ringwood, “Numerical analysis of the hydrodynamic scaling effects for the wavestar wave energy converter,” Journal of Fluids and Structures, vol. 105, p. 103328, 2021, doi: https://doi.org/10.1016/j.jfluidstructs.2021.103328
- D. Vicinanza, E. D. Lauro, P. Contestabile, C. Gisonni, J. L. Lara, I. J. Losada, “Review of innovative harbor breakwaters for wave energy conversion,” Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 145, no. 4, p. 03119001, 2019, doi: https://doi.org/10.1061/(ASCE)WW.1943-5460.0000519
- R. Cascajo, E. García, E. Quiles, A. Correcher, F. Morant, “Integration of marine wave energy converters into seaports: A case study in the port of Valencia,” Energies, vol. 12, no. 5, p. 787, 2019, doi: https://doi.org/10.3390/en12050787
- J. Tao, M. Hann, D. Greaves, H. Shi, “Numerical study of a point absorber wave energy converter with different power take-off systems,” Ocean Engineering, vol. 242, p. 110181, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.110181
- K. Porter, S. Ordonez-Sanchez, C. Johnstone, S. Conesa, “Integration of a direct drive contra-rotating generator with point absorber wave energy converters,” in 12th European Wave and Tidal Energy Conference, 2017.
- A. Babajani, M. Jafari, P. Hafezisefat, M. Mirhosseini, A. Rezania, L. Rosendahl, “Parametric study of a wave energy converter (searaser) for Caspian sea,” Energy Procedia, vol. 147, pp. 334–342, 2018, doi: https://doi.org/10.1016/j.egypro.2018.07.101
- K. Veerabhadrappa, B. Suhas, C. K. Mangrulkar, R. S. Kumar, V. Mudakappanavar, K. Seetharamu et al., “Power generation using ocean waves: A review,” Global Transitions Proceedings, 2022, doi: https://doi.org/10.1016/j.gltp.2022.05.001
- E. Quaranta, C. Trivedi, “The state-of-art of design and research for pelton turbine casing, weight estimation, counterpressure operation and scientific challenges,” Heliyon, vol. 7, no. 12, p. e08527, 2021, doi: https://doi.org/10.1016/j.heliyon.2021.e08527
- R. C. Thomson, J. P. Chick, G. P. Harrison, “An lca of the pelamis wave energy converter,” The International Journal Of Life Cycle Assessment, vol. 24, no. 1, pp. 51–63, 2019, doi: https://doi.org/10.1007/s11367-018-1504-2
- M. H. Jahangir, A. Shahsavari, M. A. V. Rad, “Feasibility study of a zero emission pv/wind turbine/wave energy converter hybrid system for stand-alone power supply: A case study,” Journal of Cleaner Production, vol. 262, p. 121250, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.121250
- A. González-Esculpi, C. Verde, P. Maya Ortiz, “Comparison of estimates of the excitation force for fault diagnosis in a wave energy converter,” IFAC-PapersOnLine, vol. 55, no. 6, pp. 396–401, 2022, doi: https://doi.org/10.1016/j.ifacol.2022.07.161
- F. Dias, E. Renzi, S. Gallagher, D. Sarkar, Y. Wei, T. Abadie, C. Cummins, A. Rafiee, “Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters,” Acta Mechanica Sinica/Lixue Xuebao, vol. 33, no. 4, pp. 647–662, 2017, doi: https://doi.org/10.1007/s10409-017-0683-6
- A. Kumawat, D. Karmakar, C. Guedes Soares, “Wave energy conversion by multiple bottom-hinged surging WEC,” in Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), 2019, pp. 913–929, doi: https://doi.org/10.1007/978-981-13-3134-3_67
- D. G. Gioia, E. Pasta, P. Brandimarte, G. Mattiazzo, “Data-driven control of a pendulum wave energy converter: A gaussian process regression approach,” Ocean Engineering, vol. 253, p. 111191, 2022, doi: https://doi.org/10.1016/j.oceaneng.2022.111191
- Q. Cai, S. Zhu, “Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters,” Applied Energy, vol. 298, p. 117228, 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117228
- S. Ogai, S. Umeda, H. Ishida, “An experimental study of compressed air generation using a pendulum wave energy converter,” Journal of Hydrodynamics, vol. 22, no. 1, pp. 290–295, 2010, doi: https://doi.org/10.1016/S1001-6058(09)60209-2
- C. Zhang, Y. Wei, F. Dias, X. Hu, “An efficient fully lagrangian solver for modeling wave interaction with oscillating wave surge converter,” Ocean Engineering, vol. 236, p. 109540, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.109540
- A. Pathak, C. Freniere, M. Raessi, “Advanced computational simulations of water waves interacting with wave energy converters,” European Journal of Computational Mechanics, vol. 26, no. 1-2, pp. 172–204, 2017, doi: https://doi.org/10.1080/17797179.2017.1306829
- M. Brito, R. M. Ferreira, L. Teixeira, M. G. Neves, L. Gil, “Experimental investigation of the flow field in the vicinity of an oscillating wave surge converter,” Journal of Marine Science and Engineering, vol. 8, no. 12, p. 976, 2020, doi: https://doi.org/10.3390/jmse8120976
- S. Saeidtehrani, “Flap-type wave energy converter arrays: Nonlinear dynamic analysis,” Ocean Engineering, vol. 236, p. 109463, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.109463
- D. Ning, C. Liu, C. Zhang, M. Göteman,H. Zhao, B. Teng, “Hydrodynamic performance of an oscillating wave surge converter in regular and irregular waves: an experimental study,” Journal of Marine Science and Technology, vol. 25, no. 5, p. 4, 2017.
- X. Jiang, S. Day, D. Clelland, “Hydrodynamic responses and power efficiency analyses of an oscillating wave surge converter under different simulated pto strategies,” Ocean Engineering, vol. 170, pp. 286–297, 2018, doi: https://doi.org/10.1016/j.oceaneng.2018.10.050
- Y. Wei, A. Rafiee, B. Elsaesser, F. Dias, “Numerical simulation of an oscillating wave surge converter,” in International Conference on Offshore Mechanics and Arctic Engineering, vol. 55317. American Society of Mechanical Engineers, 2013, doi: https://doi.org/10.1115/OMAE2013-10189
- D. Sarkar, F. Dias, “Performance enhancement of the oscillating wave surge converter by a breakwater,” in The Twenty-fifth International Ocean and Polar Engineering Conference. OnePetro, 2015.
- J. Wu, L. Qin, N. Chen, C. Qian, S. Zheng, “Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose,” Energy, vol. 245, p. 123318, 2022, doi: https://doi.org/10.1016/j.energy.2022.123318
- C. Liang, J. Ai, L. Zuo, “Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier,” Ocean Engineering, vol. 136, pp. 190–200, 2017, doi: https://doi.org/10.1016/j.oceaneng.2017.03.024
- M. Shadman, G. O. G. Avalos, S. F. Estefen, “On the power performance of a wave energy converter with a direct mechanical drive power take-off system controlled by latching,” Renewable Energy, vol. 169, pp. 157–177, 2021, doi: https://doi.org/10.1016/j.renene.2021.01.004
- Z. Liu, R. Zhang, H. Xiao, X. Wang, “A survey of power take-off systems of ocean wave energy converters,” Preprints.org, 2019, doi: https://doi.org/10.20944/preprints201907.0335.v1
- X. Li, C. Chen, Q. Li, L. Xu, C. Liang, K. Ngo, R. G. Parker, L. Zuo, “A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification,” Applied Energy, vol. 278, p. 115459, 2020, doi: https://doi.org/10.1016/j.apenergy.2020.115459
- X. Li, D. Martin, C. Liang, C. Chen, R. G. Parker, L. Zuo, “Characterization and verification of a two-body wave energy converter with a novel power take-off,” Renewable Energy, vol. 163, pp. 910–920, 2021, doi: https://doi.org/10.1016/j.renene.2020.08.113
- M. Penalba, J. V. Ringwood, “A review of wave-to-wire models for wave energy converters,” Energies, vol. 9, no. 7, p. 506, 2016, doi: https://doi.org/10.3390/en9070506
- D. Zhang, W. Li, Y. Lin, J. Bao, “An overview of hydraulic systems in wave energy application in china,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 4522–4526, 2012, doi: https://doi.org/10.1016/j.rser.2012.04.005
- S. Sheng, K. Wang, H. Lin, Y. Zhang, Y. You, Z. Wang, A. Chen, J. Jiang, W. Wang, and Y. Ye, “Model research and open sea tests of 100 kw wave energy convertor sharp eagle wanshan,” Renewable Energy, vol. 113, pp. 587–595, 2017, doi: https://doi.org/10.1016/j.renene.2017.06.019
- H. Zhang, J. Zhang, X. Zhou, Q. Shi, D. Xu, Z. Sun, Y. Lu, B. Wu, “Robust performance improvement of a raft-type wave energy converter using a nonlinear stiffness mechanism,” International Journal of Mechanical Sciences, vol. 211, p. 106776, 2021, doi: https://doi.org/10.1016/j.ijmecsci.2021.106776
- S. Wu, Y. Liu, J. Qin, “Experimental analyses of two-body wave energy converters with hydraulic power take-off damping in regular and irregular waves,” IET Renewable Power Generation, vol. 15, no. 14, pp. 3165–3175, 2021, doi: https://doi.org/10.1049/rpg2.12218
- S. Zou, O. Abdelkhalik, “Control of wave energy converters with discrete displacement hydraulic power take-off units,” Journal of Marine Science and Engineering, vol. 6, no. 2, p. 31, 2018, doi: https://doi.org/10.3390/jmse6020031
- Comisión Colombiana De Océano, “Cco-límites de Colombia.” [En línea]. Disponible en: https://cco.gov.co/cco/prensa/noticias/115-asuntos-internacionales/338-limites-de-colombia.html
- “Decreto 570 de 2018 - gestor normativo - función pública.” [En línea]. Disponible en: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=85659
- A. Rubio-Clemente, L. Velásquez, E. Chica, “Design of a water channel to model the wave conditions in the colombian pacific ocean,” in 20th International Conference on Renewable Energies and Power Quality (ICREPQ’22), 2022. [En línea]. Disponible en: https://www.icrepq.com/posters/icrepq22/325-rubio.pdf
- C. M. Appendini, C. P. Urbano-Latorre, B. Figueroa, C. J. Dagua-Paz, A. Torres-Freyermuth, P. Salles, “Wave energy potential assessment in the caribbean low level jet using wave hindcast information,” Applied energy, vol. 137, pp. 375–384, 2015, doi: https://doi.org/10.1016/j.apenergy.2014.10.038
- J. Pérez Zapata et al., “Identificación y cuantificación del potencial de energía undimotriz en la costa del departamento del atlántico, Colombia,” Revista Ingeniería, Investigación y Desarrollo, vol 17, no 2, 2017, doi: https://doi.org/10.18041/1794-4953/avances.1.4740
- A. J. P. Idárraga, H. Diaz, J. A. P. Peñaranda, “Viabilidad técnica de tecnologías para aprovechamiento de la energía undimotriz en la costa del pacífico colombiano,” Avances: Investigación en Ingeniería, vol. 15, no. 1, pp. 286–301, 2018, doi: https://doi.org/10.18041/1794-4953/avances.1.4740
- J. Portilla, A. L. Caicedo, R. Padilla-Hernández, L. Cavaleri, “Spectral wave conditions in the colombian pacific ocean,” Ocean Modelling, vol. 92, pp. 149–168, 2015, doi: https://doi.org/10.1016/j.ocemod.2015.06.005
- F. R. Menco, A. Rubio-Clemente, E. Chica, “Design of a wave energy converter system for the Colombian Pacific Ocean,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 94, pp. 8–23, 2020, doi: https://doi.org/10.17533/udea.redin.20190406
- D. G. Gioia, E. Pasta, P. Brandimarte, G. Mattiazzo, “Data-driven control of a pendulum wave energy converter: A gaussian process regression approach,” Ocean Engineering, vol. 253, p. 111191, 2022, doi: https://doi.org/10.1016/j.oceaneng.2022.111191
- S. Gunawardane, G. Bandara, Y.-H. Lee, “Hydrodynamic analysis of a novel wave energy converter: Hull reservoir wave energy converter (hrwec),” Renewable Energy, vol. 170, pp. 1020–1039, 2021, doi: https://doi.org/10.1016/j.renene.2021.01.140