Vol. 22 Núm. 2 (2023): Revista UIS Ingenierías
Artículos

Selección de un convertidor de energía de las olas de tipo oscilante y un sistema de toma de fuerza para el aprovechamiento de la energía undimotriz de Colombia

Juan Pablo Castaño-Serna
Universidad de Antioquia
Edwin Chica-Arrieta
Universidad de Antioquia

Publicado 2023-06-13

Palabras clave

  • convertidor undimotriz,
  • convertidor undimotriz tipo oscilante,
  • sistema de toma de fuerza,
  • PTO,
  • WEC,
  • OWSC
  • ...Más
    Menos

Cómo citar

Castaño-Serna, J. P., & Chica-Arrieta , E. . . (2023). Selección de un convertidor de energía de las olas de tipo oscilante y un sistema de toma de fuerza para el aprovechamiento de la energía undimotriz de Colombia. Revista UIS Ingenierías, 22(2), 141–166. https://doi.org/10.18273/revuin.v22n2-2023012

Resumen

Los dispositivos de generación undimotriz son dispositivos que se encargan de transformar la energía proveniente de las olas del mar en energía eléctrica. Los sistemas de toma de fuerza se caracterizan por tomar la energía mecánica obtenida mediante el dispositivo undimotriz y facilitar su conversión a energía eléctrica. En este trabajo, inicialmente se realizó una búsqueda y evaluación de los dispositivos tipo oscilantes convertidores de energía de las olas y sistemas de toma de fuerza disponibles en la literatura para identificar su ventajas y desventajas con el fin de seleccionar los sistemas más indicados para el aprovechamiento del recurso undimotriz de Colombia. Los sistemas seleccionados corresponden a dispositivos undimotriz acoplados a estructuras fijas a la costa y sistemas de toma mecánica directa debido a que, estos presentan mayores ventajas en cuanto a su proceso de fabricación, puesta a punto, operación y mantenimiento. Finalmente se presenta un diagrama de flujo del proceso de diseño de estos sistemas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. H. E. Murdock, D. Gibb, T. André, J. L. Sawin, A. Brown, L. Ranalder, U. Collier, C. Dent, B. Epp, C. Hareesh Kumar et al., “Renewables 2021-global status report,” 2021.
  2. “Data & Statistics - IEA.” [En línea]. Disponible en: https://www.iea.org/data-and-statistics/data-browser?country=WORLD&fuel=Energysupply&indicator=TESbySource
  3. World Meteorological Organization, “Wmo greenhouse gas bulletin,” World Meteorological Organization: Geneva, Switzerland, 2021. [En línea]. Disponible en: https://public.wmo.int/en/greenhouse-gas-bulletin#:~:text=WMO's%20Greenhouse%20Gas%20Bulletin%20reported,biological%20and%20human%2Dinduced%20processes.
  4. Q. Tu, J. Mo, R. Betz, L. Cui, Y. Fan, Y. Liu, “Achieving grid parity of solar pv power in china-the role of tradable green certificate,” Energy Policy, vol. 144, p. 111681, 2020, doi: https://doi.org/10.1016/j.enpol.2020.111681
  5. P. Dato, “Investment in energy efficiency, adoption of renewable energy and household behavior: Evidence from oecd countries,” The Energy Journal, vol. 39, no. 3, 2018, doi: https://www.jstor.org/stable/26534449
  6. P. Sun, B. Xu, J. Wang, “Long-term trend analysis and wave energy assessment based on era5 wave reanalysis along the chinese coastline,” Applied Energy, vol. 324, p. 119709, 2022, doi: https://doi.org/10.1016/j.apenergy.2022.119709
  7. K. Gunn, C. Stock-Williams, “Quantifying the global wave power resource,” Renewable Energy, vol. 44, pp. 296–304, 2012, doi: https://doi.org/10.1016/j.renene.2012.01.101
  8. I. López, J. Andreu, S. Ceballos, I. M. De Alegría, I. Kortabarria, “Review of wave energy technologies and the necessary powerequipment,” Renewable and sustainable energy reviews, vol. 27, pp. 413–434, 2013, doi: https://doi.org/10.1016/j.rser.2013.07.009
  9. “Energía del océano.” [En línea]. Disponible en: https://www.irena.org/ocean
  10. “Wave developers: EMEC: European Marine Energy Centre.” [En línea]. Disponible en: https://www.emec.org.uk/marine-energy/wave-developers/
  11. X. Zhang, J. Yang, “Power capture performance of an oscillating-body wec with nonlinear snap through pto systems in irregular waves,” Applied Ocean Research, vol. 52, pp. 261– 273, 2015, doi: https://doi.org/10.1016/j.apor.2015.06.012
  12. R. Ahamed, K. McKee, I. Howard, “Advancements of wave energy converters based on power take off (pto) systems: A review,” Ocean Engineering, vol. 204, p. 107248, 2020.
  13. A. Henry, O. Kimmoun, J. Nicholson, G. Dupont, Y. Wei, F. Dias, “A two dimensional experimental investigation of slamming of an oscillating wave surge converter,” in The Twenty-fourth International Ocean and Polar Engineering Conference, OnePetro, 2014.
  14. E. Renzi, F. Dias, “Resonant behaviour of an oscillating wave energy converter in a channel,” Journal of Fluid Mechanics, vol. 701, pp. 482– 510, 2012. https://doi.org/10.1017/jfm.2012.194
  15. B. Sorensen, Renewable energy conversion, transmission and storage. Elsevier, 2007, doi: https://doi.org/10.1016/B978-0-12-374262-9.X5001-0
  16. A. Têtu, “Power take-off systems for wecs,” in Handbook of ocean wave energy. Springer, Cham, 2017, pp. 203–220, doi: https://doi.org/10.1007/978-3-319-39889-1_8
  17. H. Nguyen, C. Wang, Z. Tay, V. Luong, “Wave energy converter and large floating platform integration: A review,” Ocean Engineering, vol. 213, p. 107768, 2020, doi: https://doi.org/10.1016/j.oceaneng.2020.107768
  18. O. M. Mazzaretto, F. Lucero, G. Besio, R. Cienfuegos, “Perspectives for harnessing the energetic persistent high swells reaching the coast of Chile,” Renewable Energy, vol. 159, pp. 494–505, 2020, doi: https://doi.org/10.1016/j.renene.2020.05.031
  19. E. Renzi and F. Dias, “Hydrodynamics of the oscillating wave surge converter in the open ocean,” European Journal of Mechanics-B/Fluids, vol. 41, pp. 1–10, 2013, doi: https://doi.org/10.1016/j.euromechflu.2013.01.007
  20. W. Ni, X. Zhang, W. Zhang, S. Liang, “Numerical investigation of adaptive damping control for raft-type wave energy converters,” Renewable Energy, vol. 175, pp. 520–531, 2021, doi: https://doi.org/10.1016/j.renene.2021.04.128
  21. F. d. O. Antonio, “Wave energy utilization: A review of the technologies,” Renewable and sustainable energy reviews, vol. 14, no. 3, pp. 899–918, 2010, doi: https://doi.org/10.1016/j.rser.2009.11.003
  22. A. Albert, G. Berselli, L. Bruzzone, P. Fanghella, “Mechanical design and simulation of an onshore four-bar wave energy converter,” Renewable Energy, vol. 114, pp. 766–774, 2017, doi: https://doi.org/10.1016/j.renene.2017.07.089
  23. A. Zhao, W. Wu, Z. Sun, L. Zhu, K. Lu, H. Chung, F. Blaabjerg, “A flower pollination method based global maximum power point tracking strategy for point-absorbing type wave energy converters,” Energies, vol. 12, no. 7, p. 1343, 2019, doi: https://doi.org/10.3390/en12071343
  24. M. Güney, “Wave energy conversion systems,” Journal of Naval Sciences and Engineering, vol. 11, no. 2, pp. 25 – 51, 2016.
  25. C. Windt, J. Davidson, J. V. Ringwood, “Numerical analysis of the hydrodynamic scaling effects for the wavestar wave energy converter,” Journal of Fluids and Structures, vol. 105, p. 103328, 2021, doi: https://doi.org/10.1016/j.jfluidstructs.2021.103328
  26. D. Vicinanza, E. D. Lauro, P. Contestabile, C. Gisonni, J. L. Lara, I. J. Losada, “Review of innovative harbor breakwaters for wave energy conversion,” Journal of Waterway, Port, Coastal, and Ocean Engineering, vol. 145, no. 4, p. 03119001, 2019, doi: https://doi.org/10.1061/(ASCE)WW.1943-5460.0000519
  27. R. Cascajo, E. García, E. Quiles, A. Correcher, F. Morant, “Integration of marine wave energy converters into seaports: A case study in the port of Valencia,” Energies, vol. 12, no. 5, p. 787, 2019, doi: https://doi.org/10.3390/en12050787
  28. J. Tao, M. Hann, D. Greaves, H. Shi, “Numerical study of a point absorber wave energy converter with different power take-off systems,” Ocean Engineering, vol. 242, p. 110181, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.110181
  29. K. Porter, S. Ordonez-Sanchez, C. Johnstone, S. Conesa, “Integration of a direct drive contra-rotating generator with point absorber wave energy converters,” in 12th European Wave and Tidal Energy Conference, 2017.
  30. A. Babajani, M. Jafari, P. Hafezisefat, M. Mirhosseini, A. Rezania, L. Rosendahl, “Parametric study of a wave energy converter (searaser) for Caspian sea,” Energy Procedia, vol. 147, pp. 334–342, 2018, doi: https://doi.org/10.1016/j.egypro.2018.07.101
  31. K. Veerabhadrappa, B. Suhas, C. K. Mangrulkar, R. S. Kumar, V. Mudakappanavar, K. Seetharamu et al., “Power generation using ocean waves: A review,” Global Transitions Proceedings, 2022, doi: https://doi.org/10.1016/j.gltp.2022.05.001
  32. E. Quaranta, C. Trivedi, “The state-of-art of design and research for pelton turbine casing, weight estimation, counterpressure operation and scientific challenges,” Heliyon, vol. 7, no. 12, p. e08527, 2021, doi: https://doi.org/10.1016/j.heliyon.2021.e08527
  33. R. C. Thomson, J. P. Chick, G. P. Harrison, “An lca of the pelamis wave energy converter,” The International Journal Of Life Cycle Assessment, vol. 24, no. 1, pp. 51–63, 2019, doi: https://doi.org/10.1007/s11367-018-1504-2
  34. M. H. Jahangir, A. Shahsavari, M. A. V. Rad, “Feasibility study of a zero emission pv/wind turbine/wave energy converter hybrid system for stand-alone power supply: A case study,” Journal of Cleaner Production, vol. 262, p. 121250, 2020, doi: https://doi.org/10.1016/j.jclepro.2020.121250
  35. A. González-Esculpi, C. Verde, P. Maya Ortiz, “Comparison of estimates of the excitation force for fault diagnosis in a wave energy converter,” IFAC-PapersOnLine, vol. 55, no. 6, pp. 396–401, 2022, doi: https://doi.org/10.1016/j.ifacol.2022.07.161
  36. F. Dias, E. Renzi, S. Gallagher, D. Sarkar, Y. Wei, T. Abadie, C. Cummins, A. Rafiee, “Analytical and computational modelling for wave energy systems: the example of oscillating wave surge converters,” Acta Mechanica Sinica/Lixue Xuebao, vol. 33, no. 4, pp. 647–662, 2017, doi: https://doi.org/10.1007/s10409-017-0683-6
  37. A. Kumawat, D. Karmakar, C. Guedes Soares, “Wave energy conversion by multiple bottom-hinged surging WEC,” in Proceedings of the Fourth International Conference in Ocean Engineering (ICOE2018), 2019, pp. 913–929, doi: https://doi.org/10.1007/978-981-13-3134-3_67
  38. D. G. Gioia, E. Pasta, P. Brandimarte, G. Mattiazzo, “Data-driven control of a pendulum wave energy converter: A gaussian process regression approach,” Ocean Engineering, vol. 253, p. 111191, 2022, doi: https://doi.org/10.1016/j.oceaneng.2022.111191
  39. Q. Cai, S. Zhu, “Applying double-mass pendulum oscillator with tunable ultra-low frequency in wave energy converters,” Applied Energy, vol. 298, p. 117228, 2021, doi: https://doi.org/10.1016/j.apenergy.2021.117228
  40. S. Ogai, S. Umeda, H. Ishida, “An experimental study of compressed air generation using a pendulum wave energy converter,” Journal of Hydrodynamics, vol. 22, no. 1, pp. 290–295, 2010, doi: https://doi.org/10.1016/S1001-6058(09)60209-2
  41. C. Zhang, Y. Wei, F. Dias, X. Hu, “An efficient fully lagrangian solver for modeling wave interaction with oscillating wave surge converter,” Ocean Engineering, vol. 236, p. 109540, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.109540
  42. A. Pathak, C. Freniere, M. Raessi, “Advanced computational simulations of water waves interacting with wave energy converters,” European Journal of Computational Mechanics, vol. 26, no. 1-2, pp. 172–204, 2017, doi: https://doi.org/10.1080/17797179.2017.1306829
  43. M. Brito, R. M. Ferreira, L. Teixeira, M. G. Neves, L. Gil, “Experimental investigation of the flow field in the vicinity of an oscillating wave surge converter,” Journal of Marine Science and Engineering, vol. 8, no. 12, p. 976, 2020, doi: https://doi.org/10.3390/jmse8120976
  44. S. Saeidtehrani, “Flap-type wave energy converter arrays: Nonlinear dynamic analysis,” Ocean Engineering, vol. 236, p. 109463, 2021, doi: https://doi.org/10.1016/j.oceaneng.2021.109463
  45. D. Ning, C. Liu, C. Zhang, M. Göteman,H. Zhao, B. Teng, “Hydrodynamic performance of an oscillating wave surge converter in regular and irregular waves: an experimental study,” Journal of Marine Science and Technology, vol. 25, no. 5, p. 4, 2017.
  46. X. Jiang, S. Day, D. Clelland, “Hydrodynamic responses and power efficiency analyses of an oscillating wave surge converter under different simulated pto strategies,” Ocean Engineering, vol. 170, pp. 286–297, 2018, doi: https://doi.org/10.1016/j.oceaneng.2018.10.050
  47. Y. Wei, A. Rafiee, B. Elsaesser, F. Dias, “Numerical simulation of an oscillating wave surge converter,” in International Conference on Offshore Mechanics and Arctic Engineering, vol. 55317. American Society of Mechanical Engineers, 2013, doi: https://doi.org/10.1115/OMAE2013-10189
  48. D. Sarkar, F. Dias, “Performance enhancement of the oscillating wave surge converter by a breakwater,” in The Twenty-fifth International Ocean and Polar Engineering Conference. OnePetro, 2015.
  49. J. Wu, L. Qin, N. Chen, C. Qian, S. Zheng, “Investigation on a spring-integrated mechanical power take-off system for wave energy conversion purpose,” Energy, vol. 245, p. 123318, 2022, doi: https://doi.org/10.1016/j.energy.2022.123318
  50. C. Liang, J. Ai, L. Zuo, “Design, fabrication, simulation and testing of an ocean wave energy converter with mechanical motion rectifier,” Ocean Engineering, vol. 136, pp. 190–200, 2017, doi: https://doi.org/10.1016/j.oceaneng.2017.03.024
  51. M. Shadman, G. O. G. Avalos, S. F. Estefen, “On the power performance of a wave energy converter with a direct mechanical drive power take-off system controlled by latching,” Renewable Energy, vol. 169, pp. 157–177, 2021, doi: https://doi.org/10.1016/j.renene.2021.01.004
  52. Z. Liu, R. Zhang, H. Xiao, X. Wang, “A survey of power take-off systems of ocean wave energy converters,” Preprints.org, 2019, doi: https://doi.org/10.20944/preprints201907.0335.v1
  53. X. Li, C. Chen, Q. Li, L. Xu, C. Liang, K. Ngo, R. G. Parker, L. Zuo, “A compact mechanical power take-off for wave energy converters: Design, analysis, and test verification,” Applied Energy, vol. 278, p. 115459, 2020, doi: https://doi.org/10.1016/j.apenergy.2020.115459
  54. X. Li, D. Martin, C. Liang, C. Chen, R. G. Parker, L. Zuo, “Characterization and verification of a two-body wave energy converter with a novel power take-off,” Renewable Energy, vol. 163, pp. 910–920, 2021, doi: https://doi.org/10.1016/j.renene.2020.08.113
  55. M. Penalba, J. V. Ringwood, “A review of wave-to-wire models for wave energy converters,” Energies, vol. 9, no. 7, p. 506, 2016, doi: https://doi.org/10.3390/en9070506
  56. D. Zhang, W. Li, Y. Lin, J. Bao, “An overview of hydraulic systems in wave energy application in china,” Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 4522–4526, 2012, doi: https://doi.org/10.1016/j.rser.2012.04.005
  57. S. Sheng, K. Wang, H. Lin, Y. Zhang, Y. You, Z. Wang, A. Chen, J. Jiang, W. Wang, and Y. Ye, “Model research and open sea tests of 100 kw wave energy convertor sharp eagle wanshan,” Renewable Energy, vol. 113, pp. 587–595, 2017, doi: https://doi.org/10.1016/j.renene.2017.06.019
  58. H. Zhang, J. Zhang, X. Zhou, Q. Shi, D. Xu, Z. Sun, Y. Lu, B. Wu, “Robust performance improvement of a raft-type wave energy converter using a nonlinear stiffness mechanism,” International Journal of Mechanical Sciences, vol. 211, p. 106776, 2021, doi: https://doi.org/10.1016/j.ijmecsci.2021.106776
  59. S. Wu, Y. Liu, J. Qin, “Experimental analyses of two-body wave energy converters with hydraulic power take-off damping in regular and irregular waves,” IET Renewable Power Generation, vol. 15, no. 14, pp. 3165–3175, 2021, doi: https://doi.org/10.1049/rpg2.12218
  60. S. Zou, O. Abdelkhalik, “Control of wave energy converters with discrete displacement hydraulic power take-off units,” Journal of Marine Science and Engineering, vol. 6, no. 2, p. 31, 2018, doi: https://doi.org/10.3390/jmse6020031
  61. Comisión Colombiana De Océano, “Cco-límites de Colombia.” [En línea]. Disponible en: https://cco.gov.co/cco/prensa/noticias/115-asuntos-internacionales/338-limites-de-colombia.html
  62. “Decreto 570 de 2018 - gestor normativo - función pública.” [En línea]. Disponible en: https://www.funcionpublica.gov.co/eva/gestornormativo/norma.php?i=85659
  63. A. Rubio-Clemente, L. Velásquez, E. Chica, “Design of a water channel to model the wave conditions in the colombian pacific ocean,” in 20th International Conference on Renewable Energies and Power Quality (ICREPQ’22), 2022. [En línea]. Disponible en: https://www.icrepq.com/posters/icrepq22/325-rubio.pdf
  64. C. M. Appendini, C. P. Urbano-Latorre, B. Figueroa, C. J. Dagua-Paz, A. Torres-Freyermuth, P. Salles, “Wave energy potential assessment in the caribbean low level jet using wave hindcast information,” Applied energy, vol. 137, pp. 375–384, 2015, doi: https://doi.org/10.1016/j.apenergy.2014.10.038
  65. J. Pérez Zapata et al., “Identificación y cuantificación del potencial de energía undimotriz en la costa del departamento del atlántico, Colombia,” Revista Ingeniería, Investigación y Desarrollo, vol 17, no 2, 2017, doi: https://doi.org/10.18041/1794-4953/avances.1.4740
  66. A. J. P. Idárraga, H. Diaz, J. A. P. Peñaranda, “Viabilidad técnica de tecnologías para aprovechamiento de la energía undimotriz en la costa del pacífico colombiano,” Avances: Investigación en Ingeniería, vol. 15, no. 1, pp. 286–301, 2018, doi: https://doi.org/10.18041/1794-4953/avances.1.4740
  67. J. Portilla, A. L. Caicedo, R. Padilla-Hernández, L. Cavaleri, “Spectral wave conditions in the colombian pacific ocean,” Ocean Modelling, vol. 92, pp. 149–168, 2015, doi: https://doi.org/10.1016/j.ocemod.2015.06.005
  68. F. R. Menco, A. Rubio-Clemente, E. Chica, “Design of a wave energy converter system for the Colombian Pacific Ocean,” Revista Facultad de Ingeniería Universidad de Antioquia, no. 94, pp. 8–23, 2020, doi: https://doi.org/10.17533/udea.redin.20190406
  69. D. G. Gioia, E. Pasta, P. Brandimarte, G. Mattiazzo, “Data-driven control of a pendulum wave energy converter: A gaussian process regression approach,” Ocean Engineering, vol. 253, p. 111191, 2022, doi: https://doi.org/10.1016/j.oceaneng.2022.111191
  70. S. Gunawardane, G. Bandara, Y.-H. Lee, “Hydrodynamic analysis of a novel wave energy converter: Hull reservoir wave energy converter (hrwec),” Renewable Energy, vol. 170, pp. 1020–1039, 2021, doi: https://doi.org/10.1016/j.renene.2021.01.140