Vol. 23 Núm. 2 (2024): Revista UIS Ingenierías
Artículos

Efectos del Aceite Lubricante Residual en las Propiedades Reológicas de los Ligantes Asfálticos: Implicaciones para la Producción Sostenible de Mezclas Asfálticas

Ingridy Minervina Silva
Federal University of Campina Grande
Osires de Medeiros Melo-Neto
Federal University of Campina Grande
Ablenya Grangeiro de Barros
University of Antwerp
Lêda Christiane de Figueirêdo Lopes Lucena
University of Campina Grande
Arthur Felipe de Farias Monteiro
Federal University of Campina Grande

Publicado 2024-04-12

Palabras clave

  • Ligante asfáltico,
  • Temperatura de compactación,
  • Sostenibilidad ambiental,
  • Inestabilidad,
  • Temperatura de mezcla,
  • Ligante modificado,
  • Formación prematura de grietas,
  • Propiedades reológicas,
  • Producto de valor agregado,
  • Aceite lubricante residual
  • ...Más
    Menos

Cómo citar

Silva, I. M. ., Melo-Neto, O. de M., de Barros , A. G. ., de Figueirêdo Lopes Lucena , L. C. ., & de Farias Monteiro , A. F. . (2024). Efectos del Aceite Lubricante Residual en las Propiedades Reológicas de los Ligantes Asfálticos: Implicaciones para la Producción Sostenible de Mezclas Asfálticas. Revista UIS Ingenierías, 23(2), 17–30. https://doi.org/10.18273/revuin.v23n2-2024002

Resumen

Reutilizar el aceite lubricante residual como una alternativa respetuosa con el medio ambiente y transformarlo en un producto de valor agregado es prometedor. Este estudio evaluó las propiedades reológicas de los ligantes asfálticos (PG 64-XX) modificados con aceite hidráulico residual. Se añadieron dos niveles de contenido de aceite, 3% y 5% en peso del ligante base. Se realizaron pruebas físicas y reológicas, incluyendo penetración, punto de reblandecimiento, viscosidad rotacional y pruebas de grado de rendimiento (PG), antes y después de someter las muestras a procedimientos como el horno de película delgada en movimiento (RTFO), deformación y recuperación bajo múltiples tensiones (MSCR), barrido de amplitud lineal (LAS) y curva maestra. Los resultados mostraron que la adición de aceite redujo la rigidez del ligante, aumentando su susceptibilidad a la formación prematura de grietas e inestabilidad. Sin embargo, las temperaturas de mezcla y compactación disminuyeron con la adición de aceite. En general, considerando los contenidos de aceite investigados, los ligantes asfálticos modificados con aceite hidráulico residual no demostraron un rendimiento satisfactorio. Se plantea la hipótesis de que incorporar aceite hidráulico residual en ligantes asfálticos recuperados podría generar resultados más favorables.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Y. O. Rodrigues, D. B. Costa, L. C. de Figueirêdo Lopes Lucena, M. C. Lopes, “Performance of warm mix asphalt containing Moringa oleifera Lam seeds oil: Rheological and mechanical properties,” Constr. Build. Mater., vol. 154, pp. 137–143, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.07.194
  2. A. C. X. Portugal, L. C. de F. L. Lucena, A. E. de F. L. Lucena, D. B. Costa, K. A. de Lima, “Rheological properties of asphalt binders prepared with maize oil,” Constr. Build. Mater., vol. 152, pp. 1015–1026, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.07.077
  3. J. Gao, H. Wang, Z. You, and M. R. Mohd Hasan, “Research on properties of bio-asphalt binders based on time and frequency sweep test,” Constr. Build. Mater., vol. 160, pp. 786–793, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.01.048
  4. W. Cao, Y. Wang, C. Wang, “Fatigue characterization of bio-modified asphalt binders under various laboratory aging conditions,” Constr. Build. Mater., vol. 208, pp. 686–696, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.03.069
  5. L. P. Ingrassia, X. Lu, G. Ferrotti, F. Canestrari, “Chemical, morphological and rheological characterization of bitumen partially replaced with wood bio-oil: Towards more sustainable materials in road pavements,” J. Traffic Transp. Eng, no. 2, pp. 192–204, 2020, doi: https://doi.org/10.1016/j.jtte.2019.04.003
  6. C. Wang, L. Xue, W. Xie, Z. You, X. Yang, “Laboratory investigation on chemical and rheological properties of bio-asphalt binders incorporating waste cooking oil,” Constr. Build. Mater., vol. 167, pp. 348–358, 2018, doi: https://doi.org/10.1016/j.conbuildmat.2018.02.038
  7. K. Yan, M. Zhang, L. You, S. Wu, H. Ji, “Performance and optimization of castor beans-based bio-asphalt and European rock-asphalt modified asphalt binder,” Constr. Build. Mater., vol. 240, p. 117951, 2020, doi: https://doi.org/10.1016/j.conbuildmat.2019.117951
  8. L. Shao, H. Wang, R. Zhang, W. Zheng, N. Hossiney, C. Wu, “Analysis of the chemical properties and high-temperature rheological properties of MDI modified bio-asphalt,” Constr. Build. Mater., vol. 267, p. 121044, 2021, doi: https://doi.org/10.1016/j.conbuildmat.2020.121044
  9. X. Shu, B. Huang, E. D. Shrum, X. Jia, “Laboratory evaluation of moisture susceptibility of foamed warm mix asphalt containing high percentages of RAP,” Constr. Build. Mater., vol. 35, pp. 125–130, 2012, doi: https://doi.org/10.1016/j.conbuildmat.2012.02.095
  10. H. Ziari, R. Babagoli, S. E. T. Razi, “The Evaluation of Rheofalt as a Warm Mix Asphalt Additive on the Properties of Asphalt Binder,” Pet. Sci. Technol., vol. 33, no. 21–22, pp. 1781–1786, 2015, doi: https://doi.org/10.1080/10916466.2015.1091841
  11. L. C. de F. L. Lucena, I. V. da . Silveiraand D. B. da Costa, “Asphalt binders modified with Moringa Oleifera Lam oil”, Matéria (Rio J.), vol. 21, no. 1, pp. 72–82, 2016, doi: https://doi.org/10.1590/S1517-707620160001.0007
  12. W. Song, B. Huang, X. Shu, “Influence of warm-mix asphalt technology and rejuvenator on performance of asphalt mixtures containing 50% reclaimed asphalt pavement,” J. Clean. Prod., vol. 192, pp. 191–198, 2018, doi: https://doi.org/10.1016/j.jclepro.2018.04.269
  13. A. Almeida-Costa, A. Benta, “Economic and environmental impact study of warm mix asphalt compared to hot mix asphalt,” J. Clean. Prod., vol. 112, pp. 2308–2317, 2016, doi: https://doi.org/10.1016/j.jclepro.2015.10.077
  14. S. Xu, F. Xiao, S. Amirkhanian, D. Singh, “Moisture characteristics of mixtures with warm mix asphalt technologies – A review,” Constr. Build. Mater., vol. 142, pp. 148–161, 2017, doi: https://doi.org/10.1016/j.conbuildmat.2017.03.069
  15. G. Ferrotti, D. Ragni, X. Lu, F. Canestrari, “Effect of warm mix asphalt chemical additives on the mechanical performance of asphalt binders,” Mater. Struct., vol. 50, no. 5, p. 226, 2017, doi: https://doi.org/10.1617/s11527-017-1096-5
  16. N. Bower et al., “Evaluation of the performance of warm mix asphalt in Washington state,” International Journal of Pavement Engineering, vol. 17, no. 5, pp. 423–434, 2016, doi: https://doi.org/10.1080/10298436.2014.993199
  17. A. C. X. Portugal, L. C. de F. L. Lucena, A. E. de F. L. Lucena, and D. Beserra da Costa, “Rheological performance of soybean in asphalt binder modification,” Road Mater. Pavement Des., vol. 19, no. 4, pp. 768–782, 2018, doi: https://doi.org/10.1080/14680629.2016.1273845
  18. S. Girimath, D. Singh, “Effects of bio-oil on performance characteristics of base and recycled asphalt pavement binders,” Constr. Build. Mater., vol. 227, p. 116684, 2019, doi: https://doi.org/10.1016/j.conbuildmat.2019.116684
  19. National Agency for Petroleum, Natural Gas and Biofuels, “ANP: Lubricant Bulletin year 3, number 22,” Brazil, 2019.
  20. H. A. Durrani, M. I. Panhwar, y R. A. Kazi, “Re-Refining of waste lubricating oil by solvent extraction,” Mehran University Research Journal of Eng. & Tech, vol. 30, no. 2, pp. 237-246, 2011.
  21. D. Sun et al., “Evaluation of optimized bio-asphalt containing high content waste cooking oil residues,” Fuel, vol. 202, pp. 529–540, 2017, doi: https://doi.org/10.1016/j.fuel.2017.04.069
  22. Z. Sun, J. Yi, Y. Huang, D. Feng, C. Guo, “Properties of asphalt binder modified by bio-oil derived from waste cooking oil,” Constr. Build. Mater., vol. 102, pp. 496–504, 2016, doi: https://doi.org/10.1016/j.conbuildmat.2015.10.173
  23. S. K. Pradhan, U. C. Sahoo, “Performance assessment of aged binder rejuvenated with Polanga oil,” J. Traffic Transp. Eng. vol. 6, no. 6, pp. 608–620, 2019, doi: https://doi.org/10.1016/j.jtte.2018.06.004
  24. L. J. S. de Souza, "Estudo das propriedades mecânicas de misturas asfálticas com cimento asfáltico de petróleo modificado com óleo de mamona," Universidade Federal de Campina Grande, Paraíba, Brasil, 2012. Disponible en: http://dspace.sti.ufcg.edu.br:8080/jspui/handle/riufcg/2826
  25. A. L. Faxina, "Estudo da viabilidade técnica do uso do resíduo de óleo de xisto como óleo extensor em ligantes asfalto-borracha," Tese de Doutorado, Escola de Engenharia de São Carlos, Universidade de São Paulo, São Carlos, 2006. doi: https://doi.org/10.11606/T.18.2006.tde-29052007-170231
  26. American Society for Testing and Materials, “ASTM D 5M: Standard Test Method for Penetration of Bituminous Materials,” West Conshohocken, PA, 2020.
  27. American Society for Testing and Materials, “ASTM D 36M-14: Standard Test Method for Softening Point of Bitumen (Ring-and-Ball Apparatus),” West Conshohocken, PA, 2020.
  28. American Society for Testing and Materials, “ASTM D 4402: Standard Test Method for Viscosity Determination of Asphalt at Elevated Temperatures Using a Rotational Viscometer,” West Conshohocken, PA, 2015.
  29. American Society for Testing and Materials, “ASTM D 6373: Standard Specification for Performance-Graded Asphalt Binder,” West Conshohocken, PA, 2021.
  30. American Society for Testing and Materials, “ASTM D 2872: Standard Test Method for Effect of Heat and Air on a Moving Film of Asphalt (Rolling Thin-Film Oven Test),” West Conshohocken, PA, 2019.
  31. American Society for Testing and Materials, “ASTM D 7405: Standard Test Method for Multiple Stress Creep and Recovery (MSCR) of Asphalt Binder Using a Dynamic Shear Rheometer,” West Conshohocken, PA, 2020.
  32. American Association of State Highway and Transportation Officials, “AASHTO TP 101-12: Standard Method of Test for Estimating Fatigue Resistance of Asphalt Binders Using the Linear Amplitude Sweep,” Washington, DC, 2018.
  33. A.C.X. Portugal, “Rheological evaluation of petroleum asphalt cements modified with soybean and corn oil,” Universidad Federal de Campina Grande, 2016.
  34. D. B. Costa, F. P. Cavalcante, J. K. G. Rodrigues, A. M. G. D. Mendonça, Y. C. Lira, “Influência da adição do óleo de linhaça nas propriedades reológicas do cimento asfáltico de petróleo,” 44° RAPV e 17° ENACOR, Maceió, AL, 2015.
  35. O. de Medeiros Melo Neto, A. M. Gonçalves Duarte Mendonça, J. K. Guedes Rodrigues, R. K. Batista de Lima, C. Silvani, y I. Minervina Silva, “Rheological study of asphalt binder modified by cotton and copaiba oils: e315”, Revista Cubana de Ingeniería, vol. 13, n.º 1, nov 2021.
  36. National Agency for Petroleum, Natural Gas and Biofuels, “ANP No. 19: Technical Regulation for Investments in Research and Development and Preparation of the Statement Report,” Brazil, 2005.
  37. O. de Medeiros Melo Neto et al., “Effects of the addition of fatty acid from soybean oil sludge in recycled asphalt mixtures,” Environ. Sci. Pollut. Res., vol. 30, no. 17, pp. 50174–50197, 2023, doi: https://doi.org/10.1007/s11356-023-25808-w
  38. O. de Medeiros Melo Neto, I. Minervina Silva, L. C. de Figueiredo Lopes Lucena, L. de Figueiredo Lopes Lucena, A. M. G. D. Mendonça, and R. K. B. de Lima, “Viability of recycled asphalt mixtures with soybean oil sludge fatty acid,” Constr. Build. Mater., vol. 349, p. 128728, 2022, doi: https://doi.org/10.1016/j.conbuildmat.2022.128728.
  39. O. de Medeiros Melo Neto, I. M. Silva, L. C. de Figueiredo Lopes Lucena, L. de Figueiredo Lopes Lucena, A. M. G. D. Mendonça, and R. K. B. de Lima, “Physical and Rheological Study of Asphalt Binders with Soybean Oil Sludge and Soybean Oil Sludge Fatty Acid,” Waste and Biomass Valorization, vol. 14, no. 6, pp. 1945–1967, 2023, doi: https://doi.org/10.1007/s12649-022-01951-2
  40. T. M. R. P. de Moraes, A. E. de Figueirêdo Lopes Lucena, O. de Medeiros Melo Neto, T. R. Porto, D. B. Costaand F. do S. de Sousa Carvalho, “Efeitos do uso da cera de carnaúba como aditivo redutor de temperaturas de mistura e compactação no desempenho mecânico de misturas asfálticas”, Matéria (Rio J.), vol. 27, no. 4, p. e20220192, 2022, doi: https://doi.org/10.1590/1517-7076-RMAT-2022-0192
  41. Federal Highway Administration, “FHWA: Warm Mix Asphalt: European Practice,” Washington, DC, 2008.
  42. American Association of State Highway and Transportation Officials, “AASHTO M 320: Standard specification for performance-graded asphalt binder,” Washington, DC, 2021.
  43. F. P. G. T. Marinho, R. dos S. A. Tamires, L. L. C. de F. Lopes, and de S. N. V. Ferreira, “Rheological Evaluation of Asphalt Binder 50/70 Incorporated with Titanium Dioxide Nanoparticles,” J. Mater. Civ. Eng., vol. 31, no. 10, p. 4019235, Oct. 2019, doi: https://doi.org/10.1061/(ASCE)MT.1943-5533.0002885