El internet de las cosas y la industria 4.0- Aplicaciones en el campo de la ingeniería industrial
Publicado 2024-06-26
Palabras clave
- internet de las cosas,
- industria 4.0,
- ingeniería industrial,
- Big Data,
- aprendizaje automático
- simulación de procesos,
- computación en la nube ...Más
Cómo citar
Derechos de autor 2024 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
Esta investigación tiene por objetivo realizar una revisión sistemática de la literatura para conocer las aplicaciones del Internet de las cosas y la industria 4.0 en la ingeniería industrial. Se hizo una revisión de la literatura en artículos científicos, obtenidos de bases de datos de EBSCO Essential, MDPI, ScienceDirect incluyendo IEEE Xplore. A partir de esta revisión se puede conocer la importancia del internet de las cosas asociada a la industria 4.0 y su relación con la ingeniería industrial. El presente articulo recopila diferentes aportes científicos en campos como machine learning, robótica, manufactura, simulación, etc., para describir la relevancia y hallazgos en el campo de la ingeniería industrial.
Descargas
Referencias
- C. Ynzunza, J. Izar, J. Bocarando, “Implications and Perspectives of Industry 4.0”, Conciencia Tecnológica, vol. 1, no. 8, pp. 33-45, 2017.
- M. Xu, J. M. David, S. H. Kim, ‘‘The fourth industrial revolution: Opportunities and challenges,’’ Int. J. Financial Res., vol. 9, no. 2, pp. 92–95, 2018, doi: https://doi.org/10.5430/ijfr.v9n2p90
- J. Corrales, N. Ribeiro, D. Roque, “Las competencias exigidas a los trabajadores de la Industria 4.0: Cambios en la gestión de personas”, Relaciones Laborales, vol. 40, no. 1, pp. 161-184, 2022, doi: https://doi.org/10.5209/crla.72383
- M. Sujatha et al., “IoT and Machine Learning-Based Smart Automation System for Industry 4.0 Using Robotics and Sensors”, Journal of Nanomaterials, 2022, pp. 1-6, doi: https://doi.org/10.1155/2022/6807585
- G. Lăzăroiu, T. Kliestik, A. Novak, “Internet of things smart devices, industrial arti ficial intelligence, and real-time sensor networks in sustainable cyber-physical production systems”, Journal of Self-Governance and Management Economics, vol. 9, no. 1, pp. 20–30, 2021, doi: https://doi.org/10.22381/jsme9120212
- D. Velásquez et al., “A Hybrid Machine-Learning Ensemble for Anomaly Detection in Real-Time Industry 4.0 Systems”, in IEEE Access, vol. 10, pp. 72024 - 72036, 2022, doi: https://doi.org/10.1109/ACCESS.2021.3188102
- G. Tancredi, G. Vignali, L. Bottani, “Integration of Digital Twin, Machine-Learning and Industry 4.0 Tools for Anomaly Detection: An application to a Food Plant”, Sensors, vol. 22, pp. 1-23, 2022, doi: https://doi.org/10.3390/s22114143
- A. Efimova, P. Briš, “The Implementation of the Conjunction of Lean Six Sigma and Industry 4.0: A case Study in the Czech Republic”, Sciendo, vol. 30, no. 3, pp. 223-229, 2022, doi: https://doi.org/10.2478/mspe-2021-0028
- H. Sikandar et al., “Scientific Mapping of Industry 4.0 Research: A bibliometric Analysis”, iJIM, vol. 15, no. 18, pp. 129-148, 2021, doi: https://doi.org/10.3991/ijim.v15i18.25535
- I. González,R. Granillo, “Competences of industrial engineers in industry 4.0”, Revista electrónica de investigación educativa, vol. 22, No. 30, pp. 1-14, doi: https://doi.org/10.24320/redie.2020.22.e30.2750
- M. Drakaki et al., “Machine Learning and Deep Learning Based Methods Towards Industry 4.0 Predictive Maintenance in Induction Motors: A State of the Art Survey”, Journal of Industrial Engineering and Management, vol.15, no. 1, pp. 31-57, 2021, doi: http://dx.doi.org/10.3926/jiem.3597
- S. Mokhtari et al., “A Machine Learning Approach for Anomaly Detection in Industrial Control Systems Based on Measurement Data”, Electronics, vol. 10, no. 407, pp. 1-13, 2021, doi: https://doi.org/10.3390/electronics10040407
- S. Chalichalamala, N. Govindan, R. Kasarupa, “Logistic regression ensemble classifier for intrusion detection system in internet of things,” Sensors, vol. 23, no. 23, pp. 1–19, 2023, doi: https://doi.org/10.3390/s23239583
- M. Haider, M. Khan, H. Alkhalefah, “Predictive Maintenance Planning for Industry 4.0 Using Maching Learning for Sustainable Manufacturing”, Sustainability, vol. 14, no. 3387, pp. 1-27, 2022, doi: https://doi.org/10.3390/su14063387
- L. Yu, H. Ming, C. Ching, “A multiplier-free convolution neural network hardware accelerator for real-time bearing condition detection of CNC machinery,” Sensors, vol. 23, no. 23, pp. 1–19, 2023, doi: https://doi.org/10.3390/s23239437
- K. Masani, S. Agrawal, P. Oza, “Predictive maintenance and monitoring of industrial machine using machine learning”, Scalable Computing: Practice and Experience, vol.20, no. 4, pp. 663-667, 2019, doi: https://doi.org/10.12694/scpe.v20i4.1585
- E. Cumbajin, N. Rodrigues, P. Costa, R. Miragaia, L. Frazão, N. Costa, A. Fernández, J. Carneiro, L. Buruberri, A. Pereira, “A real-time automated defect detection system for ceramic pieces manufacturing process based on computer vision with deep learning,” Sensors, vol. 24, no. 1, pp. 1–22, 2024, doi: https://www.mdpi.com/1424-8220/24/1/232
- F. Ferras, R. Francelin, S. Jen, “Machine learning for detection and diagnostics of anomalies in applications driven by electric motors,” Sensors, vol. 23, no. 24, pp. 1–25, 2023, doi: https://doi.org/10.3390/s23249725
- G. Shankarrao, A. Pandya, “How artificial intelligence and machine learning assist in industry 4.0 for mechanical engineers”, Materialstoday Proceedings, 2022, doi: https://doi.org/10.1016/j.matpr.2022.08.201
- A. Jaramillo, J. Govea, W. Villegas, ‘‘Anomaly detection in a smart industrial machinery plant using IoT and machine learning,’’ Sensors, vol. 23, no. 19, pp. 1–22, 2023, doi: https://doi.org/10.3390/s23198286
- L. Concetti, G. Mazzuto, F. E. Ciarapica, M. Bevilacqua, “An unsupervised anomaly detection based on self-organizing map for the oil and gas sector,” Appl. sciences, vol. 13, no. 6, pp. 1–28, 2023, doi: https://doi.org/10.3390/app13063725
- I. Peinado, N. Montés, E. Garcia, “Virtual sensor of gravity centres for real-time condition monitoring of an industrial stamping press in the automotive industry,” Sensors, vol. 23, no. 14, pp. 1–17, 2023, doi: https://doi.org/10.3390/s23146569
- K. Tai, B. Gupta, J. Liu, V. Arya, N. Nedjah, A. Almomani, P. Chaurasia, “A survey of internet of things and cyber-physical system: standards, algorithms, applications, security, challenges, and future directions,” Information, vol. 14, no. 7, pp. 1–20, 2023, doi: https://www.mdpi.com/2078-2489/14/7/388
- M. Lowe, R. Qin, X. Mao, “A Review on Machine Learning, Artificial Intelligence, and Smart Technology in Water Treatment and Monitoring”, Water, vol. 14, no. 1384, 2022, doi: https://doi.org/10.3390/w14091384
- M. Guida, F. Caniato, A. Moretto, S. Ronchi, “The role of artificial intelligence in the procurement process: State of the art and research agenda,” Journal Of Purchasing and Supply Management, vol. 29, no. 2, pp. 1–21, 2023, doi: https://doi.org/10.1016/j.pursup.2023.100823
- F. Bachinger, J. Zenisek, M. Affenzeller, “Automated machine learning for industrial applications- challenges and opportunities,” Procedia Computer Science, vol. 232, pp. 1701–1710, 2024, doi: https://doi.org/10.1016/j.procs.2024.01.168
- S. Elkateb, A. Métwalli, A. Shendy, A. Abu, “Machine learning and IoT-Based predictive maintenance approach for industrial applications,” Alexandria Engineering Journal, vol. 88, pp. 298–309, 2024, doi: https://doi.org/10.1016/j.aej.2023.12.065
- A. Adam et al., “Green supply chain managament and performance of listed oil and gas firms in Nigeria: A moderating role of internet of thing”, Gusan Journal of Accounting and Finance, vol. 2, no. 2, 2021, pp. 1-23, doi: https://doi.org/10.57233/gujaf.v2i2.61
- K. Qureshi, B. Mewada, S. Kaur, S. Alghamdi, N. Almakayeel, A. Almuflih, M. Mohamed, “Sustainable manufacturing supply chain performance enhancement through technology utilization and process innovation in industry 4.0: A SEM-PLS approach,” Sustainability, vol. 15, no. 21, pp. 1–20, 2023, doi: https://doi.org/10.3390/su152115388
- A. Althabatah, M. Yaqot, B. Menezes, L. Kerbache, “Transformative procurement trends: Integrating industry 4.0 technologies for enhanced procurement processes,” Logistics, vol. 7, no. 3, pp. 1–40, 2023, doi: https://doi.org/10.3390/logistics7030063
- P. Renna, “A review of game theory models to support production planning, scheduling, cloud manufacturing and sustainable production systems,” Designs, vol. 8, no. 2, pp. 1–40, 2024, doi: https://doi.org/10.3390/designs8020026
- N. Adamashvili, N. Zhizhilashvili, C. Tricase, “The integration of the internet of things, artificial intelligence, and blockchain technology for advancing the wine supply chain,” Computers, vol. 13, no. 3, pp. 1–25, 2024, doi: https://www.mdpi.com/2073-431X/13/3/72
- N. Azizi et al., “IoT-Blockchain: Harnessing the Power of Internet of Thing and Blockchain for Smart Supply Chain,” Sensors, no. 21, 2021, pp. 1-25, doi: https://doi.org/10.3390/s21186048
- K. Pantanjal, S. Dheeraj, P. Pandey, “Industry 4.0 (I4.0) Based Virtual Organization Model for the Coordination of Sustainable Textile Supply Chain”, American Business Review, vol. 25, no. 1, 2022, doi: https://doi.org/10.37625/abr.25.1.186-208
- E. Elif, “Industry 4.0 and Sustainable Supply Chain”, Journal of Economic & Administrative Sciences, vol. 43, no. 1, pp. 123-144, 2021, doi: https://doi.org/10.14780/muiibd.960306
- A. Z. Musaddak et al., “Internet of Things-Based Smart and Connected Supply Chain: A Review”, International Journal of Antennas & Propagation, pp. 1-5, 2022, doi: https://doi.org/10.1155/2022/8182813
- L. Zhang, W. Zhou, J. Xia et al., “Dqn-based mobile edge computing for smart internet of vehicle”, EURASIP Journal on Advances in Signal Processing, no. 1, pp. 1–16, 2022, doi: https://doi.org/10.1186/s13634-022-00876-1
- T. de Vass, H. Shee, S. Miah, “The effect of -Internet of Things- on supply chain integration and performance: An organisational capability perspective,” Australasian Journal of Information Systems, vol. 22, pp. 1–30, 2018, doi: https://doi.org/10.3127/ajis.v22i0.1734
- H. Nazir, J. Fan, ‘‘Revolutionizing retail: Examining the influence of blockchain-enable IoT capabilities on sustainable firm performance,” Sustainability, vol. 16, no. 9, pp. 1–23, 2024, doi: https://doi.org/10.3390/su16093534
- A. Alzahrani, M. Zubair, “Intelligent risk prediction system in IoT-Based supply chain management in logistics sector,” Electronics, vol. 12, no.13, pp. 1–24, 2023, doi: https://doi.org/10.3390/electronics12132760
- S. Turki, “Major emerging markets: A systematic literature review of benefits, use, challenges, and mitigation strategies in supply chain management,” Sustainability, vol. 15, no.20, pp. 1–30, 2023, doi: https://doi.org/10.3390/su152014811
- F. Yudi, T. Ming, I. Wahyuni, A. Lopes de sousa, C. Chiappetta, C. Foropon, “Cyber supply chain risk management and performance in industry 4.0 era: information system security practices in Malaysia,” Journal of Industrial and Production Engineering, vol. 40, no. 2, doi: https://doi.org/10.1080/21681015.2022.2116495
- M. Jameel, T. Masood, “Industry 4.0 driven green supply chain management in renewable energy sector: A critical systematic literature review,” Journal of Industrial and Production Engineering., vol. 16, no.19, 2023, doi: https://doi.org/10.3390/en16196977
- R. Mouly, M. Kilaru, “Sustainability in supply chain management: A case study of the Indian retailing industry,” Eng. Proc, vol. 59, no.1, pp. 1-11, 2023, doi: https://doi.org/10.3390/engproc2023059064
- L. Lynberg, and A. Deif, “Network effects in blockchain and supply chain: a theorical research synthesis,” Modern Supply Chain Research and Applications, vol. 5, no.1, pp. 1-26, 2023, doi: https://doi.org/10.1108/MSCRA-07-2022-0016
- R. Mashat, S. Abourokbah, M. Asif, “Impact of internet of things adoption on organizational performance: A mediating analysis of supply chain integration, performance, and competitive advantage,” Sustainability, vol. 16, no.6, pp. 1-25, 2024, doi: https://doi.org/10.3390/su16062250
- P. Trakadas et al., “An Artificial Intelligence-Based Collaboration Approach in Industrial IoT Manufacturing: Key Concepts, Architectural Externsions and Potential Applications”, Sensors, vol. 20, no. 5480, pp. 1-20, 2020, doi: https://doi.org/10.3390/s20195480
- W. Qilin, Z. Yue, “Automation Design and Organization Innovation of Manufacturing Enterprises Based on the Internet of Things”, Hindawi Scientific Programming, pp. 1–12, 2022, doi: https://doi.org/10.1155/2022/8729731
- L. Liu, P. Zhao, “Manufacturing Service Innovation and Foreign Trade Upgrade Model Based on Internet of Things and Industry 4.0”, Hindawi Mathematical Problems in Engineering, pp. 1–13, 2022, doi: https://doi.org/10.1155/2022/4148713
- P. Barrios, C. Danjou B. Eynard, “Literature review and methodological framework fo integration of IoT and PLM in manufacturing industry”, Computers in Industry, vol. 140, 2022, doi: https://doi.org/10.1016/j.compind.2022.103688
- M. Sira, “Efficient Practices of Cognitive Technology Application For Smart Manufacturing”, Sciendo-Management Systems in Production Engineering, vol. 30, no. 2, pp. 187-191, 2022, doi: https://doi.org/10.2478/mspe-2022-0023
- A. Reddy, “Effective usage of artificial intelligence in enterprise resource planning applications,” International Journal Of Computer Trends And Technology, vol. 71, no.4, pp. 73-80, 2023, doi: https://doi.org/10.14445/22312803/IJCTT-V71I4P109
- K. Vukman, K. Klarić, K. Greger, I. Perić, “Driving efficiency and competitiveness: Trends and innovations in ERP systems for wood industry,” Forests, vol. 15, no.2, pp. 1-21, 2024, doi: https://doi.org/10.3390/f15020230
- N. Kashpruk, C. Piskor, J. Baranowski, “Time series prediction in industry 4.0: A comprehensive review and prospect for future advancements,” Appl. Scien, vol. 13, no.22, pp. 1-20, 2023, doi: https://doi.org/10.3390/app132212374
- C. Serôdio, P. Mestre, J. Cabral, M. Gomes, F. Branco, “Software and architecture orchestration for process control in industry 4.0 enable by cyber-physical systems technologies,” Appl. Scien., vol. 14, no.5, pp. 1-17, 2024, doi: https://doi.org/10.3390/app14052160
- M. Ullah et al., “Industrial Energy Management System: Design of a Conceptual Framework Using IoT and Big Data”, TechRxiv, vol. 10, pp. 110557-110567, 2021, doi: https://doi.org/10.36227/techrxiv.17045891.v1
- AL. Fadi, BD. Deeback, “Seamless Authentication: For IoT-Big Data Technologies in Smart Industrial Application Systems”, IEEE Transactions on Industrial Informatics, vol. 17, no. 4, pp. 2919-2927, 2021, doi: https://doi.org/10.1109/TII.2020.2990741
- P. Pathak, N. Vyas, S. Joshi, “Security Challenges for Communications on IOT & Big Data”, International Journal of Advanced Research in Computer Science, vol. 8, no. 3, pp. 431-436, 2017.
- D. Andersen, C. Ashbrook, N. Karlborg “Significance of Big Data analytics and internet of things (IoT) aspects in industrial development, governance and sustainability”, International Journal of Intelligence Networks, Vol. 1, pp. 107-111, 2020, Available: https://doi.org/10.1016/j.ijin.2020.12.003
- L. Hu, X. Xia, “5G-Oriented IoT Big Data Analysis Method System”, Hindawi Mobile Information Systems, pp. 1–9, 2021, doi: https://doi.org/10.1155/2021/3186696
- L. Pirrone, A. Bionda, A. Ratti, “How digital technologies can support sustainability of the waterborne passenger mobility ecosystem: A case study analysis of smart circular practice in northern Europe,” Sustainability, vol. 16, no.1, pp. 1-21, 2024, doi: https://doi.org/10.3390/su16010353
- K. Suann, C. Min, J. Shyong, T. Hung, Y. Syuan, ‘‘Fuzzy radar evaluation chart for improving machining quality of components,” Mathematics., vol. 12, no.5, pp. 1-17, 2024, doi: https://doi.org/10.3390/math12050732
- Y. Saif, A. Zafiah, Y. Yusof, M. Lliyas, S. Al, D. Hissein, A. Adam, Y. Hyeon, M. Al, H. Abdullah, “Advancements in roundness measurement parts for industrial automation using internet of things architecture-based computer vision and image processing techniques,” Appl. Scien., vol. 13, no.20, pp. 1-22, 2023, doi: https://doi.org/10.3390/app132011419
- L. Ortíz et al., “Computación en la Nube: Estudio de Herramientas Orientadas a la Industria 4.0”, Lámpsakos, no. 20, pp. 68–75, 2018, doi: https://doi.org/10.21501/21454086.2560
- I. Abdullahi, S. Longo, M. Samie, “Towards a distributed digital twin framework for predictive maintenance in industrial internet of things (IIoT),” Sensors, vol. 24, no.8, pp. 1-30, 2024, doi: https://doi.org/10.3390/s24082663
- E. Taiwo, O. Christiana, J. Bamiele, “A lightweight image cryptosystem for cloud-assisted internet of things,” Applied Scie., vol. 14, no.7, pp. 1-27, 2024, doi: https://doi.org/10.3390/app14072808
- R.M.M. Salem et al., “An Industrial Cloud-Based IoT System for Real-Time Monitoring and Controlling of Wastewater”, IEEE Access, vol. 10, pp. 6528 – 6540, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3141977
- N. Sun, “Deep Learning System for Recycled Clothing Classification Linked to Cloud and Edge Computing”, Hindawi Computational Intelligence and Neuroscience, 2022, doi: https://doi.org/10.1155/2022/6854626
- J. Nam, Y. Yun, M. Choi, “High Performance IoT Cloud Computing Framework Using Pub/Sub Techniques”, Applied Sciences, vol. 12, no. 11009, pp. 1-20, 2022, doi: https://doi.org/10.3390/app122111009
- L. Song, “Construction of Accounting Internal Control Managament Platform Based on IoT Cloud Computing”, Hindawi- Wireless Communications and Mbile Computings, vol. 2022, pp. 1-13, 2022, doi: https://doi.org/10.1155/2022/9552118
- S. Badotra, S. Panda, “A review on software-defined networking enabled IoT cloud computing”, IIUM Engineering Journal, vol. 20, no. 2, 2019, doi: https://doi.org/10.31436/iiumej.v20i2.1130
- H. Li, “Implementation of chemical logistics supervision forewarning platform based on IoT cloud computing”, Chemical, vol.71, pp. 727-732, 2018, doi: https://doi.org/10.3303/CET1871122
- S. Janík, M. Míkva, M. Marecêk, “Effective data utilization in the context of industry 4.0 technology integration,” Appl. Sci, vol. 12, no. 10517, pp. 1-16, 2022, doi: https://doi.org/10.3390/app122010517
- Y. Hung, “Investigating how the cloud computing transforms the development of industries”, IEEE access, no. 7, pp.181505-181517, 2019, doi: https://doi.org/10.1109/ACCESS.2019.2958973
- C. Cacciuttolo, V. Guzmán, P. Catriñir, E. Atencio, “Sensor technologies for safety monitoring in mine tailings storage facilities: Solutions in the industry 4.0 Era,” Minerals, vol. 14, no. 5, pp. 1-34, 2024, doi: https://doi.org/10.3390/min14050446
- M. Zafar, A. Alsabban, “Industry-4.0-Enable digital transformation: Prospects, instruments, challenges, and implications for business state,” Sustainability, vol. 15, no. 11, pp. 1-33, 2023, doi: https://doi.org/10.3390/su15118553
- X. Cao, H. Bo, Y. Liu, X. Liu, “Effects of different resource-sharing strategies in cloud manufacturing: a Stackelberg game-based approach,” International Journal Of Production Research, vol. 61, no. 2, pp. 520-540, 2023, doi: https://doi.org/10.1080/00207543.2021.2010824
- W. Zhu, C. Zhou, L. Jiang, “A trusted internet of things access scheme for cloud edge collaboration,” Electronics, vol. 13, no. 6, pp. 1-17, 2024, doi: https://doi.org/10.3390/electronics13061026
- J. Khan et al., “Artificial intelligence and internet of things (AI-IoT) technologies in response to covid-19 pandemic: A systematic review”, IEEE Xplore, vol. 10, pp. 62613-62660, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3181605
- C. Naves, F. Verdier, S. Glock, P. Guitton, “A fair crowd-sourced automotive data monetization approach using substrate hybrid consensus blockchain,” Future Internet., vol. 16, no. 5, pp. 1-27, 2024, doi: https://doi.org/10.3390/fi16050156
- I. Leila, R. Buyya, “Artificial intelligence applications and self-Learning 6G networks for smart cities digital ecosystems: taxonomy, challenges, and future directions”, Sensors, vol. 22, no. 15, pp. 2-30, 2022, doi: https://doi.org/10.3390/s22155750
- D. Stadnicka et al., “Industrial needs in the fields of artificial intelligence, internet of things and edge computing”, Sensors, no. 22, 2022, pp. 1-47, doi: https://doi.org/10.3390/s22124501
- L. Pa´sko et al., “Plan and develop advanced knowledge and kkills for future industrial employees in the field of artificial intelligence, internet of things and edge computing”, Sustainability, vol.14, no. 6, pp. 1-49, 2022, doi: https://doi.org/10.3390/ su14063312
- L. Lachvajderová, J. Kádárová, “Industry 4.0 implementation and industry 5.0 readliness in industrial enterprises”, Management And Production Engineering Review, vol. 13, no. 3, pp. 102-109, 2022, doi: https://doi.org/10.24425/mper.2022.142387
- A. Sayeed et al., “Approaches and challenges in internet of robotics things”, Future internet, vol. 14, no. 265, pp. 1-30, 2022, doi: https://doi.org/10.3390/fi14090265
- T. Ahmad et al., “Energetics systems and artificial intelligence: applications of industry 4.0”, Energy Reports, 2022, vol. 8, pp. 334-361, doi: https://doi.org/10.1016/j.egyr.2021.11.256
- A. Toopshekan, H. Yousefi and F.R. Astaraei, “Technical, economic, and performance analysis of hybrid energy system using a novel dispatch strategy” Energy, 2020, vol. 213, pp. 1-19, doi: https://doi.org/10.1016/j.energy.2020.118850
- P. Mah, I. Skalna, J. Muzam, “Natural languaje processing and artificcial intelligence for enterprise managament in the era of industry 4.0”, Applied Scienses, vol. 12, no. 9207, pp. 1-26, 2022, doi: https://doi.org/10.3390/app12189207
- M. Tanniru et al., “An agile digital platform to support population health- A case study of a digital platform to support patients with delirium using IoT, NLP, and IA”, International Journal of Environment Research and Public Health, vol. 18, no. 5686, pp. 1-22, 2021, doi: https://doi.org/10.3390/ijerph18115686
- H. Nasreddine et al., “AIoT with I4.0: the effect of internet of things and artificial intelligence technologies on the industry 4.0”, ITM Web of Conference, vol. 46, pp. 1-5, 2022, doi: https://doi.org/10.1051/itmconf/20224603002
- W. Rafique et al., “An Application Development Framework for Internet of things service orchestration,” IEEE Internet Of Things Journal, vol. 7, No. 5, pp. 4543-4556, 2020, doi: https://doi.org/10.1109/JIOT.2020.2971013
- D. De Avila et al., “Internet of things e inteligência artificial nos meios produtivos”, Revista CIATEC, vol. 14, No. 2, pp. 156-165, 2022, doi: https://doi.org/10.5335/ciatec.v14i2.13789
- P. Araújo, R. Moreira, L. Veiga, L. Dos Santos, V. Batista, “Artificial intelligence and industry 4.0? Validation of challenges considering the context of an emerging economy country using Cronbach’s Alpha and the Lawshe method,” Eng., vol. 4, no. 3, pp. 1-16, 2023, doi: https://doi.org/10.3390/eng4030133
- J. Li, M. Sacit, J. Nathwani, J. Wen, “Methods and applications for artificial intelligence, Big Data, Internet of things, and blockchain in smart energy management,” Energy and Ai., vol. 11, pp. 1-18, 2023, doi: https://doi.org/10.1016/j.egyai.2022.100208
- L. Espina, J. Gregorio, H. Gutiérrez, H. Dworaczek, Y. Solier, L. Emérita, J. Rio, “Which industrial sectors are affected by artificial intelligence? A bibliometric analysis of trends and perspective,” Sustainability, vol. 15, no. 16, pp. 1-18, 2023, doi: https://doi.org/10.3390/su151612176
- I. Rojek et al., “Modern methods in the field of machine modelling and simulation as a research and practical issue related to industry 4.0”, Bull. Pol. Acad. Sci. Tech. Sci, Vol. 69, no. 2, pp. 1-12, 2021, doi. https://doi.org/10.24425/bpasts.2021.136717
- G. Jin, S. Ma, Z. Li, “Dynamic simulation modeling of industrial robot kinematics in industry 4.0”, Hindawi- Discrete dynamics in nature and society, 2022, vol. 2022, pp. 1-11, doi: https://doi.org/10.1155/2022/3217360
- B. Rodič, “Industry 4.0 and the new simulation modelling paradigm”, Organizacija, vol. 50, no. 3, pp. 193-207, 2022, doi: https://doi.org/10.1515/orga-2017-0017
- Y. Zêdo, A. Andrade, "Simulation for decision support in process reengineering in the automotive industry", International Journal of Mathematical, Engineering and Management Sciences, vol. 7, no. 2, pp. 176-195, 2022, doi: https://doi.org/10.33889/IJMEMS.2022.7.2.012
- S. Luściński, V. Ivanov, “A simulation study of industry 4.0 factories based on the ontology on flexibility with using Flexsim software”, Management and Production Engineering Review, vol. 11, no. 3, pp. 74-83, 2020, doi: https://doi.org/10.24425/mper.2020.134934
- M. Niekurzak, E. Kubińska, “Production line modelling in accordance with the industry 4.0 concept as an element of process management in the iron and steel industry”, Management and Production Engineering Review, vol. 12, no. 4, pp. 3-12, 2021, doi: https://doi.org/10.24425/mper.2021.139990
- J. Cavata et al., “Highlighting the benefits of industry 4.0 for production: an agent-based simulation approach”, Gestão & Produção, vol. 27, no. 3, pp. 1-35, 2020, doi: https://doi.org/10.1590/0104-530X5619-20
- L. Alpala et al., “Methodology for the design and simulation of industrial facilities and production systems based on a modular approach in an industry 4.0 context”, Dyna, vol. 85, no. 207, pp. 243-252, 2018, doi: http://doi.org/10.15446/dyna.v85n207.68545
- A. Florescu, S. Barabas, “Modeling and simulation of a flexible manufacturing system—a basic component of industry 4.0”, Applied Sciences, vol. 10, no. 22, pp. 1-20, 2020, doi: http://dx.doi.org/10.3390/app10228300
- M. Arucu, “Industry 4.0 – Holistic Perspective: Modeling and Simulation Implementations in Manufacturing Systems”, Journal of Innovative Science And Engineering, vol. 5, no. 1, pp. 50-63, 2021, doi: https://doi.org/10.38088/jise.816023
- J. Braun et al., “A robot localization propostal the robotat factory 4.0: A novel robotics competition within the industry 4.0 concept”, Frontiers, vol. 9, pp. 1-19, 2022, doi: https://doi.org/10.3389/frobt.2022.1023590
- K. Klincewicz, “Robotics in the context of industry 4.0: patenting activities in Poland and their comparison with global developments”, Problemy ZarzÈdzania, 2019, vol.17, pp. 53-95, doi: https://doi.org/10.7172/1644-9584.82.3
- H. Parmar et al., “Advanced robotics and additive manufacturing of composites: towards a new era in industry 4.0”, Materials and Manufacturing Processes, 2021, vol. 37, no. 5, pp. 483-517, doi: https://doi.org/10.1080/10426914.2020.1866195
- J. Ribeiro, “Robotic process automation and artificial inltelligence in industry 4.0- a literature review”, Procedia-Computer Science, vol. 181, pp. 51-58, 2021, doi: https://doi.org/10.1016/j.procs.2021.01.104
- J. Enríquez et al., “Robotic process automation: A scientific and industrial systematic mapping study”, IEEEaccess, 2020, vol. 8, pp. 39113-39129, doi: https://doi.org/10.1109/ACCESS.2020.2974934
- J. Yi, L. Guo, “AHP-Based network security situation assessment for industrial internet of things,” Electronics., vol. 12, no. 16, pp. 1-20, 2023, doi: https://www.mdpi.com/2079-9292/12/16/3458
- J. Zhang, H. Feng, B. Liu, D. Zhao, “Survey of technology in network security situation awareness,” Sensors, vol. 23, no. 5, pp. 1-25, 2023, doi: https://doi.org/10.3390/s23052608
- H. Alshahrani, A. Khan, M. Rizwan, M. Saleh, A. Sulaiman, A. Shaikh, “Intrusion detection framework for industrial internet of things software defined network,” Sustainability, vol. 23, no. 5, pp. 1-18, 2023, doi: https://doi.org/10.3390/su15119001
- T. Emad, C. Yung, S. Manickan, “Machine learning techniques to detect a DDoS attack in SDN: A systematic review,” Appl. Scie., vol. 13, no. 5, pp. 1-27, 2023, doi: https://doi.org/10.3390/app13053183
- S. Amertet, G. Gebresenbet, H. Mohammed, “Utilizing an internet of things (IoT) device, intelligent control design, and simulation for an agricultural system,” IoT., vol. 5, no. 1, pp. 1-21, 2024, doi: https://doi.org/10.3390/iot5010004
- H. Karimah, M. Akmal, K. Syazwan, N. Alina, A. González, J. Corchado, M. Saberi, “Recent advancements and chellenges of AIoT application in smart agriculture: A review,” IoT., vol. 23, no. 7, pp. 1-22, 2023, doi: https://doi.org/10.3390/s23073752
- K. Valaskova, M. Nagy, G. Grecu, “Digital Twin simulation modeling, artificial intelligence-based internet of manufacturing things systems, and virtual machine and cognitive computing algorithms in the industry 4.0 based Slovak labor market,” Oeconomia, vol. 15, no. 1, pp. 1-49, 2024, doi: https://doi.org/10.24136/oc.2814
- M. Lemstra, E. Quinaglia, M. de Mesquita, “Industry 4.0 Technologies in industrial engineering courses: A faculty survey in Brazil”, International Journal of Engineering Education, vol. 38, no. 5, pp. 1458-1469, 2022.
- S. Coşkun, Y. Kayıkcı, E. Gençay, “Adapting Engineering Education to Industry 4.0 Vision”, Technologies, vol. 7, no. 1, pp. 1-13, 2019, doi: http://dx.doi.org/10.3390/technologies7010010