Vol. 22 Núm. 4 (2023): Revista UIS Ingenierías
Artículos

Resistencia a la corrosión de un acero inoxidable martensítico nitrogenado con alto contenido de carbono diseñado y producido a bajas presiones de nitrógeno

Pablo Miguel Coha Vesga
Universidad Pedagógica y Tecnológica de Colombia
Guilherme Yuuki-Koga
Universidade Federal de São Carlos
Martín Emilio Mendoza-Oliveros
Universidad Pedagógica y Tecnológica de Colombia
Francisco Gil-Coury Gil-Coury
Universidade Federal de São Carlos
Lais Mujica-Roncery
Universidad Pedagógica y Tecnológica de Colombia

Publicado 2023-12-01

Palabras clave

  • martensítico,
  • acero nitrogenado,
  • CALPHAD,
  • corrosión,
  • dureza,
  • MEV,
  • polarización,
  • carburo,
  • potencial,
  • densidad de corriente,
  • acero de herramientas,
  • acero inoxidable
  • ...Más
    Menos

Cómo citar

Coha Vesga, P. M., Yuuki-Koga , G. ., Mendoza-Oliveros, M. E., Gil-Coury, F. G.-C., & Mujica-Roncery , L. (2023). Resistencia a la corrosión de un acero inoxidable martensítico nitrogenado con alto contenido de carbono diseñado y producido a bajas presiones de nitrógeno. Revista UIS Ingenierías, 22(4), 181–190. https://doi.org/10.18273/revuin.v22n4-2023015

Resumen

Fue diseñado mediante el método CALPHAD un nuevo acero inoxidable martensítico con alto contenido de nitrógeno y carbono a bajas presiones. La composición química del acero se verificó mediante espectrometría de emisión óptica, obteniendo 0,17% en peso de N y 1,33% en peso de C. Se realizaron análisis de microscopía electrónica de barrido (SEM) para la caracterización microestructural. Las propiedades del acero se evaluaron mediante pruebas de dureza Rockwell y polarización potenciodinámica en solución de NaCl al 0,6 M. El acero mostró valores máximos de dureza de 60 HRC, considerándose un material duro. Sin embargo, dado el alto contenido de carbono que promovió el exceso de carburos ricos en Cr, se evitó la formación de película pasiva.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. P. M. Coha-Vesga, M. E. Mendoza-Oliveros, F. R. Pérez-Villamil, F. Coury, and L. Mujica-Roncery, “Novel Martensitic High Carbon‐Nitrogen Steel Produced by Casting at Low Pressure,” steel Res. Int., Oct. 2022, doi: https://doi.org/10.1002/srin.202200686
  2. N. B. Dhokey, A. Upadhye, N. Shah, and K. T. Tharian, “Transition in wear behavior and mechanical properties of novel high nitrogen martensitic steel in cryogenic temperature regimes,” Mater. Today Proc., vol. 43, pp. 3023–3029, 2021, doi: https://doi.org/10.1016/j.matpr.2021.01.367
  3. X. Qi, H. Mao, and Y. Yang, “Corrosion behavior of nitrogen alloyed martensitic stainless steel in chloride containing solutions,” Corros. Sci., vol. 120, pp. 90–98, May 2017, doi: https://doi.org/10.1016/j.corsci.2017.02.027
  4. V. G. Gavriljuk and H. Berns, High Nitrogen Steels. Berlin, Heidelberg: Springer Berlin Heidelberg, 1999. doi: https://doi.org/10.1007/978-3-662-03760-7
  5. G. O. Rhodes and J. J. Conway, “High-nitrogen austenitic stainless steels with high strength and corrosion resistance,” JOM, vol. 48, no. 4, pp. 28–31, Apr. 1996, doi: https://doi.org/10.1007/BF03222915
  6. N. Shah, K. Arora, N. B. Dhokey, N. Dileep Kumar, and K. T. Tharian, “Studies on Wear Behaviour and DBTT in Sub-zero Regimes of Cryo-Treated High Nitrogen Martensitic Stainless Steel (HNMS),” Trans. Indian Inst. Met., vol. 72, no. 8, pp. 2121–2126, Aug. 2019, doi: https://doi.org/10.1007/S12666-018-01555-2
  7. A. Bénéteau, P. Weisbecker, G. Geandier, E. Aeby-Gautier, and B. Appolaire, “Austenitization and precipitate dissolution in high nitrogen steels: an in situ high temperature X-ray synchrotron diffraction analysis using the Rietveld method,” Mater. Sci. Eng. A, vol. 393, no. 1–2, pp. 63–70, Feb. 2005, doi: https://doi.org/10.1016/J.MSEA.2004.09.054
  8. D. H. Ping and M. Ohnuma, “ω-Fe particle size and distribution in high-nitrogen martensitic steels,” J. Mater. Sci., vol. 53, no. 7, pp. 5339–5355, Apr. 2018, doi: https://doi.org/10.1007/s10853-017-1938-0
  9. G. Stein and I. Hucklenbroich, “Manufacturing and Applications of High Nitrogen Steels,” Mater. Manuf. Process., vol. 19, no. 1, pp. 7–17, Dec. 2004, doi: https://doi.org/10.1081/AMP-120027494
  10. H. B. Li, Z. H. Jiang, Q. F. Ma, and D. P. Zhan, “Some Theoretical Problems Analysis of Melting High Nitrogen Stainless Steels,” Adv. Mater. Res., vol. 455–456, pp. 103–109, Jan. 2012, doi: https://doi.org/10.4028/www.scientific.net/AMR.455-456.103
  11. A. G. Svyazhin, S. P. Efimenko, and L. M. Kaputkina, “The Problems of High-Nitrogen Steels Production,” Mater. Sci. Forum, vol. 318–320, pp. 353–358, Oct. 1999, doi: https://doi.org/10.4028/www.scientific.net/MSF.318-320.353
  12. L. Zhekova and T. Rashev, “Feasibility study on developing high-nitrogen steels by refining in suspended state under high pressure,” Metallurgist, vol. 51, no. 1–2, pp. 90–96, Jan. 2007, doi: https://doi.org/10.1007/s11015-007-0018-0
  13. H. Feng et al., “Influence of nitrogen on corrosion behaviour of high nitrogen martensitic stainless steels manufactured by pressurized metallurgy,” Corros. Sci., vol. 144, pp. 288–300, Nov. 2018, doi: https://doi.org/10.1016/j.corsci.2018.09.002
  14. H. Berns, V. G. (Valentin G. Gavrili︠u︡k, and S. Riedner, High interstitial stainless austenitic steels. Springer, 2013.
  15. P. K. Farayibi, M. Blüm, and S. Weber, “Densification of a high chromium cold work tool steel powder in different atmospheres by SLPS: Microstructure, heat treatment and micromechanical properties,” Mater. Sci. Eng. A, vol. 777, p. 139053, Mar. 2020, doi: https://doi.org/10.1016/j.msea.2020.139053
  16. S.-Y. Lu, K.-F. Yao, Y.-B. Chen, M.-H. Wang, and X.-Y. Ge, “Influence of Heat Treatment on the Microstructure and Corrosion Resistance of 13 Wt Pct Cr-Type Martensitic Stainless Steel,” Metall. Mater. Trans. A, vol. 46, no. 12, pp. 6090–6102, Dec. 2015, doi: https://doi.org/10.1007/s11661-015-3180-1
  17. H. Feng et al., “Significance of Partial Substitution of Carbon by Nitrogen on Strengthening and Toughening Mechanisms of High Nitrogen Fe-15Cr-1Mo-C-N Martensitic Stainless Steels,” Metall. Mater. Trans. A, vol. 50, no. 11, pp. 4987–4999, Nov. 2019.
  18. H. Berns, N. Krasokha, and M. Seifert, “Nitrogen and Ausforming to Improve Stainless Martensitic Steels,” steel Res. Int., vol. 85, no. 7, pp. 1200–1208, Jul. 2014, doi: https://doi.org/10.1002/srin.201300299
  19. O. A. Bannykh, V. M. Blinov, and M. V. Kostina, “Structure and Properties of Low-Alloy High-Nitrogen Martensitic Steels,” Met. Sci. Heat Treat. 2003 451, vol. 45, no. 1, pp. 43–48, 2003, doi: https://doi.org/10.1023/A:1023952230778
  20. A. V. Elistratov, V. M. Blinov, A. G. Rakhshtadt, A. A. Aliev, A. N. Malofeeva, and A. D. Davydov, “Effect of the Chemical Composition and Structure of High-Chromium-Nitrogen Steels on Their Corrosion Resistance,” Met. Sci. Heat Treat., vol. 45, no. 9/10, pp. 385–389, Sep. 2003, doi: https://doi.org/10.1023/B:MSAT.0000009786.65463.78
  21. H. Feng et al., “Designing for high corrosion-resistant high nitrogen martensitic stainless steel based on DFT calculation and pressurized metallurgy method,” Corros. Sci., vol. 158, p. 108081, Sep. 2019, doi: https://doi.org/10.1016/j.corsci.2019.07.007
  22. X. Cai, X.-Q. Hu, L.-G. Zheng, and D.-Z. Li, “Hot Deformation Behavior and Processing Maps of 0.3C–15Cr–1Mo–0.5N High Nitrogen Martensitic Stainless Steel,” Acta Metall. Sin. (English Lett., vol. 33, no. 5, pp. 693–704, May 2020, doi: https://doi.org/10.1007/s40195-019-00991-3
  23. J. Speer, C. M. Enloe, K. Findley, C. Vantyne, and E. Pavlina, “Solubility and Precipitation of Carbides Containing Niobium and Molybdenum in Low Alloy Steels,” Apr. 2015.
  24. G. T. Burstein, “Understanding Localized Corrosion through Electrochemical Measurements,” ECS Trans., vol. 3, no. 31, pp. 193–204, Sep. 2007, doi: https://doi.org/10.1149/1.2789227
  25. J. Ramírez et al., “Effect of solution annealing temperature on the localised corrosion behaviour of a modified super austenitic steel produced in an open-air atmosphere,” Mater. Chem. Phys., vol. 299, p. 127498, Apr. 2023, doi: https://doi.org/10.1016/j.matchemphys.2023.127498
  26. C. E. Pinedo, Tratamentos Térmicos e Superficiais dos Acos, 1st ed. Sao Paulo: Edgard Blucher Ltda., 2021.
  27. R. Rejeesh et al., “Relative effect of B and N concentrations on the microstructural stability and mechanical properties of modified 9Cr-1Mo steel,” J. Alloys Compd., vol. 867, p. 158971, Jun. 2021, doi: https://doi.org/10.1016/j.jallcom.2021.158971
  28. L. Bourithis, G. D. Papadimitriou, and J. Sideris, “Comparison of wear properties of tool steels AISI D2 and O1 with the same hardness,” Tribol. Int., vol. 39, no. 6, pp. 479–489, Jun. 2006, doi: https://doi.org/10.1016/j.triboint.2005.03.005
  29. J. Ravagli-Reyes, E. Pérez-Ruiz, and J. Llano-Martínez, “Estudio del grado de endurecimiento y resistencia al desgaste por deslizamiento del acero AISI 1045 endurecido por temple con refrigerante automotory para mecanizado,” Rev. UIS Ing., vol. 18, no. 2, pp. 113–118, Feb. 2019, doi: https://doi.org/10.18273/revuin.v18n2-2019010