Vol. 23 Núm. 2 (2024): Revista UIS Ingenierías
Artículos

Metodología de producción de prótesis de miembro inferior: una revisión exhaustiva

Jerson Fabian Maldonado-Moreno
Universidad Santo Tomás
Javier Steven Martínez-Castañeda
Universidad Santo Tomás
Yekin Daniela Beltrán-Malaver
Universidad Santo Tomás
Iván Camilo Riveros-Pineda
Universidad Santo Tomás
German David Tovar-Hernández
Universidad Santo Tomás

Publicado 2024-06-10

Palabras clave

  • diseño,
  • prótesis de miembro inferior,
  • desarrollo de prótesis,
  • control de prótesis,
  • biomecánica

Cómo citar

Maldonado-Moreno, J. F., Martínez-Castañeda , J. S., Beltrán-Malaver , Y. D. ., Riveros-Pineda , I. C. ., & Tovar-Hernández , G. D. . (2024). Metodología de producción de prótesis de miembro inferior: una revisión exhaustiva. Revista UIS Ingenierías, 23(2), 167–186. https://doi.org/10.18273/revuin.v23n2-2024011

Resumen

La revisión bibliográfica presentada a continuación contiene un compendio de la información necesaria e indispensable para tener en cuenta, a cerca del diseño y desarrollo de prótesis de miembro inferior. El documento presenta los aspectos más importantes tomados de 91 trabajos diferentes, de alto impacto, y relacionados con esta temática. Al finalizar el documento, se presenta una sección con las conclusiones y aspectos más importantes, además de mostrar los futuros desafíos y expectativas que se tienen con respeto a las prótesis de miembro inferior.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. M. Windrich, M. Grimmer, O. Christ, S. Rinderknecht, P. Beckerle, “Active lower limb prosthetics: A systematic review of design issues and solutions,” BioMedical Engineering Online, vol. 15. 2016, doi: https://doi.org/10.1186/s12938-016-0284-9
  2. C. Tudor-Locke and D. R. Bassett Jr, “How many steps/day are enough? Preliminary pedometer indices for public health,” Sports Medicine, vol. 34, no. 1, pp. 1–8, 2004.
  3. J. C. Gómez Beltrán, “Identificación de las personas con discapacidad en los territorios desde el rediseño del registro,” Dane: Información para Todos. Accessed: Jun. 20, 2023. [Online]. Available: https://www.dane.gov.co/files/investigaciones/discapacidad/identificacion%20en%20los%20territorios.pdf
  4. C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, P. A. Villegas Bolaños, “Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” [Online]. Available: https://revistacmfr.org/index.php/rcmfr/article/view/141
  5. NASDAB (National Amputee Statistical Database), “The Amputee statistical database for the United Kingdom 2006/07,” BibSonomy. 2009.
  6. Presidencia de la República de Colombia, “Estadísticas de Asistencia Integral a las Víctimas de MAP y MUSE,” Acción contra minas. [Online]. Available: http://www.accioncontraminas.gov.co/Estadisticas/estadisticas-de-victimas
  7. N. L. Dudek, M. B. Marks, S. C. Marshall, J. P. Chardon, “Dermatologic conditions associated with use of a lower-extremity prosthesis,” Arch Phys Med Rehabil, vol. 86, no. 4, pp. 659–663, 2005, doi: https://doi.org/10.1016/j.apmr.2004.09.003
  8. F. Martínez, A. Olmos, J. M. Rodríguez, A. Claudio, S. Vergara, B. M. González, “Propuesta de estrategia de control para prótesis transfemorales inteligentes,” in Memorias del XVI Congreso Latinoamericano de Control Automático, CLCA 2014, Cancún: CLCA, 2014.
  9. M. Asif et al., “Advancements, Trends and Future Prospects of Lower Limb Prosthesis,” IEEE Access, vol. 9, pp. 85956 – 85977, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3086807
  10. R. Safari, “Lower limb prosthetic interfaces: Clinical and technological advancement and potential future direction,” Prosthet Orthot Int, vol. 44, no. 6, pp. 384 – 401, 2020, doi: https://doi.org/10.1177/0309364620969226
  11. H. Meulenbelt, J. Geertzen, M. Jonkman, P. Dijkstra, “Skin Problems of the Stump in Lower Limb Amputees: 1. A Clinical Study,” Acta Dermato Venereologica, vol. 91, no. 2, pp. 173–177, 2011, doi: https://doi.org/10.2340/00015555-1040
  12. N. L. Dudek, M. B. Marks, S. C. Marshall, “Skin Problems in an Amputee Clinic,” Am J Phys Med Rehabil, vol. 85, no. 5, pp. 424 – 429, 2006, doi: https://doi.org/10.1097/01.phm.0000214272.01147.5a
  13. K. Hachisuka, T. Nakamura, S. Ohmine, H. Shitama, K. Shinkoda, “Hygiene problems of residual limb and silicone liners in transtibial amputees wearing the total surface bearing socket,” Arch Phys Med Rehabil, vol. 82, no. 9, pp. 1286 – 1290, 2001, doi: https://doi.org/10.1053/apmr.2001.25154
  14. M. J. Hall, D. G. Shurr, M. J. VanBeek, M. B. Zimmerman, “The Prevalence of Dermatological Problems for Transtibial Amputees Using a Roll-on Liner,” JPO Journal of Prosthetics and Orthotics, vol. 20, no. 4, pp. 134 – 139, Oct. 2008, doi: https://doi.org/10.1097/JPO.0b013e31818ad38a
  15. T. R. Dillingham, L. E. Pezzin, E. J. MacKenzie, A. R. Burgess, “Use and Satisfaction with Prosthetic Devices Among Persons with Trauma-Related Amputations,” Am J Phys Med Rehabil, vol. 80, no. 8, pp. 563 – 571, 2001, doi: https://doi.org/10.1097/00002060-200108000-00003
  16. H. E. Meulenbelt, J. H. Geertzen, M. F. Jonkman, P. U. Dijkstra, “Determinants of Skin Problems of the Stump in Lower-Limb Amputees,” Arch Phys Med Rehabil, vol. 90, no. 1, pp. 74 – 81, 2009, doi: https://doi.org/10.1016/j.apmr.2008.07.015
  17. K. Ghoseiri, M. R. Safari, “Prevalence of heat and perspiration discomfort inside prostheses: Literature review,” J Rehabil Res Dev, vol. 51, no. 6, pp. 855–868, 2014, doi: https://doi.org/10.1682/JRRD.2013.06.0133
  18. C. Quintero Quiroz, V. Z. Pérez, “Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems,” Revista Facultad de Medicina, vol. 67, no. 1, pp. 117–126, 2019. doi: https://doi.org/10.15446/revfacmed.v67n1.64470
  19. C. E. Roffman, J. Buchanan, and G. T. Allison, “Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules,” J Physiother, vol. 60, no. 4, pp. 224–231, 2014, doi: https://doi.org/10.1016/j.jphys.2014.09.003
  20. D. Durmus et al., “The relationship between prosthesis use, phantom pain and psychiatric symptoms in male traumatic limb amputees,” Compr Psychiatry, vol. 59, pp. 45–53, 2015, doi: https://doi.org/10.1016/j.comppsych.2014.10.018
  21. G. E. Reiber et al., “Servicemembers and veterans with major traumatic limb loss from Vietnam war and OIF/OEF conflicts: Survey methods, participants, and summary findings,” The Journal of Rehabilitation Research and Development, vol. 47, no. 4, p. 275, 2010, doi: https://doi.org/10.1682/JRRD.2010.01.0009
  22. R. L. O. Ramos, A. D. Baryolo Cardoso, “Rehabilitación del Amputado de Miembro Inferior,” Medicina de Rehabilitación Cubana, 2023. [Online]. Available: http://www.sld.cu/sitios/rehabilitacion/
  23. J. E. Zamudio Palacios et al., “Modelo dinámico de una prótesis transtibial para ciclistas paralímpicos,” in II Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil – AmITIC, 2018, pp. 151–157. [Online]. Available: https://revistas.utp.ac.pa/index.php/memoutp/article/view/1849
  24. F. Martínez, A. Olmos, J. M. Rodríguez, A. Claudio, S. Vergara, and B. M. González, “Propuesta de estrategia de control para prótesis transfemorales inteligentes,” in XVI Congreso Latinoamericano de Control Automático, CLCA, Cancún, Oct. 2014. [Online]. Available: https://amca.mx/memorias/amca2014/media/files/0201.pdf
  25. C. Quintero-Quiroz, V. Z. Pérez, “Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems,” Revista Facultad de Medicina, vol. 67, no. 1, pp. 117–126, 2019, doi: https://doi.org/10.15446/revfacmed.v67n1.64470
  26. P. K. Kumar, M. Charan, S. Kanagaraj, “Trends and Challenges in Lower Limb Prosthesis,” IEEE Potentials, vol. 36, no. 1, pp. 19–23, 2017, doi: https://doi.org/10.1109/MPOT.2016.2614756
  27. JD Hsu, JW Michael, and JR Fisk, AAOS Atlas of Orthoses and Assistive Devices, Fourth Edition. Mosby Elsevier, 2008.
  28. S. L. Phillips, W. Craelius, “Material properties of selected prosthetic laminates,” Journal of Prosthetics and Orthotics, vol. 17, no. 1, pp. 27–34, 2005, doi: https://doi.org/10.1097/00008526-200501000-00007
  29. X. Jia, M. Zhang, W. C. C. Lee, “Load transfer mechanics between trans-tibial prosthetic socket and residual limb—dynamic effects,” J Biomech, vol. 37, no. 9, pp. 1371–1377, 2004, doi: https://doi.org/10.1016/j.jbiomech.2003.12.024
  30. G. K. Klute, B. C. Glaister, J. S. Berge, “Prosthetic Liners for Lower Limb Amputees,” Prosthet Orthot Int, vol. 34, no. 2, pp. 146–153, 2010, doi: https://doi.org/10.3109/03093641003645528
  31. J. Z. Laferrier, R. Gailey, “Advances in Lower-limb Prosthetic Technology,” Phys Med Rehabil Clin N Am, vol. 21, no. 1, pp. 87–110, 2010, doi: https://doi.org/10.1016/j.pmr.2009.08.003
  32. S. Arun, S. Kanagaraj, “Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees,” J Mech Behav Biomed Mater, vol. 59, pp. 1–10, 2016, doi: https://doi.org/10.1016/j.jmbbm.2015.12.013
  33. M.-S. Scholz et al., “The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review,” Compos Sci Technol, vol. 71, no. 16, pp. 1791 – 1803, 2011, doi: https://doi.org/10.1016/j.compscitech.2011.08.017
  34. Å. Bartonek, M. Eriksson, E. M. Gutierrez-Farewik, “A new carbon fibre spring orthosis for children with plantarflexor weakness,” Gait Posture, vol. 25, no. 4, pp. 652–656, Apr. 2007, doi: https://doi.org/10.1016/j.gaitpost.2006.07.013
  35. D. Datta, S. K. Vaidya, J. Howitt, L. Gopalan, “Outcome of fitting an ICEROSS prosthesis,” Prosthet Orthot Int, vol. 20, no. 2, pp. 111–115, 1996, doi: https://doi.org/10.3109/03093649609164427
  36. C. Comotti, D. Regazzoni, C. Rizzi, A. Vitali, “Multi-material design and 3D printing method of lower limb prosthetic sockets,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Oct. 2015, pp. 42–45, doi: https://doi.org/10.1145/2838944.2838955
  37. R. Miclaus, A. Repanovici, and N. Roman, “Biomaterials: Polylactic acid and 3D printing processes for orthosis and prosthesis,” Materiale Plastice, vol. 54, no. 1, pp. 98–102, 2017, doi: https://doi.org/10.37358/mp.17.1.4794
  38. K.-T. Nguyen, L. Benabou, and S. Alfayad, “Systematic Review of Prosthetic Socket Fabrication using 3D printing,” in Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering, 2018, pp. 137–141, doi: https://doi.org/10.1145/3191477.3191506
  39. L. Paterno, M. Ibrahimi, E. Gruppioni, A. Menciassi, L. Ricotti, “Sockets for Limb Prostheses: A Review of Existing Technologies and Open Challenges,” IEEE Trans Biomed Eng, vol. 65, no. 9, pp. 1996–2010, 2018, doi: https://doi.org/10.1109/TBME.2017.2775100
  40. Z. Tao, H.-J. Ahn, C. Lian, K.-H. Lee, C.-H. Lee, “Design and optimization of prosthetic foot by using polylactic acid 3D printing,” Journal of Mechanical Science and Technology, vol. 31, no. 5, pp. 2393–2398, 2017, doi: https://doi.org/10.1007/s12206-017-0436-2
  41. P. M. Stevens, R. R. DePalma, S. R. Wurdeman, “Transtibial Socket Design, Interface, and Suspension: A Clinical Practice Guideline,” JPO Journal of Prosthetics and Orthotics, vol. 31, no. 3, pp. 172–178, Jul. 2019, doi: https://doi.org/10.1097/JPO.0000000000000219
  42. A. Staros, “The SACH (Solid-Ankle Cushion-Heel) Foot,” Orthotics and Prosthetics, vol. 11, no. 2, pp. 23–31, 1957.
  43. Blatchford, “Orion3.” [Online]. Available: https://www.blatchfordmobility.com/en-gb/products/knees/orion3
  44. Steeper Group, “Prosthetic Knees Freedom Plie 3.” 2023. [Online]. Available: https://www.steepergroup.com/prosthetics/lower-limb-prosthetics/knees/plie-3/
  45. Ottobock, “Genium.” [Online]. Available: https://shop.ottobock.us/Prosthetics/Lower-Limb-Prosthetics/Knees---Microprocessor/Genium/Genium/p/3B1-3#product-specification-section
  46. Össur, “RHEO KNEE.” [Online]. Available: https://www.ossur.com/en-us/prosthetics/knees/rheo-knee
  47. H. M. Herr, A. M. Grabowski, “Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation,” Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1728, pp. 457–464, 2012, doi: https://doi.org/10.1098/rspb.2011.1194
  48. Össur, “Power Knee.” [Online]. Available: https://www.ossur.com/en-us/prosthetics/knees/power-knee
  49. T. Chin et al., “Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP),” Prosthet Orthot Int, vol. 31, no. 3, pp. 271–276, Sep. 2007, doi: https://doi.org/10.1080/03093640601040152
  50. D. Datta, J. Howitt, “Conventional versus microchip controlled pneumatic swing phase control for trans-femoral amputees,” Prosthet Orthot Int, vol. 22, no. 2, pp. 129–135, 1998, doi: https://doi.org/10.3109/03093649809164474
  51. M. Bellmann, T. Schmalz, S. Blumentritt, “Comparative Biomechanical Analysis of Current Microprocessor-Controlled Prosthetic Knee Joints,” Arch Phys Med Rehabil, vol. 91, no. 4, pp. 644–652, Apr. 2010, doi: https://doi.org/10.1016/j.apmr.2009.12.014
  52. D. C. Toledo-Pérez, M. A. Martínez-Prado, R. A. Gómez-Loenzo, W. J. Paredes-García, J. Rodríguez-Reséndiz, “A study of movement classification of the lower limb based on up to 4-EMG channels,” Electronics (Switzerland), vol. 8, no. 3, Mar. 2019, doi: https://doi.org/10.3390/electronics8030259
  53. K. Yuan, J. Zhu, Q. Wang, L. Wang, “Finite-state control of powered below-knee prosthesis with ankle and toe,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, pp. 2865–2870, doi: https://doi.org/10.3182/20110828-6-IT-1002.03064
  54. S. K. Au, H. Herr, J. Weber, and E. C. Martinez-Villalpando, “Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 3020–3026, doi: https://doi.org/10.1109/IEMBS.2007.4352965
  55. B. E. Lawson, B. Ruhe, A. Shultz, M. Goldfarb, “A Powered Prosthetic Intervention for Bilateral Transfemoral Amputees,” IEEE Trans Biomed Eng, vol. 62, no. 4, pp. 1042–1050, 2015, doi: https://doi.org/10.1109/TBME.2014.2334616
  56. N. P. Fey, A. M. Simon, A. J. Young, L. J. Hargrove, “Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds,” IEEE J Transl Eng Health Med, vol. 2, pp. 1–12, 2014, doi: https://doi.org/10.1109/JTEHM.2014.2343228
  57. R. D. Gregg, T. Lenzi, L. J. Hargrove, J. W. Sensinger, “Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments With Transfemoral Amputees,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1455–1471, 2014, doi: https://doi.org/10.1109/TRO.2014.2361937
  58. N. Anil Kumar, W. Hong, and P. Hur, Impedance Control of a Transfemoral Prosthesis using Continuously Varying Ankle Impedances and Multiple Equilibria. 2019.
  59. K. Yuan, Q. Wang, J. Zhu, L. Wang, “A Hierarchical Control Scheme for Smooth Transitions between Level Ground and Ramps with a Robotic Transtibial Prosthesis,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 3527–3532, 2014, doi: https://doi.org/10.3182/20140824-6-ZA-1003.02667
  60. R. F. Campos, J. B. Machado, S. Givigi, and L. H. de C. Ferreira, “Control of a Mechanical Knee Based on Predictive Control Techniques,” in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019, pp. 1–4, doi: https://doi.org/10.1109/CCECE.2019.8861754
  61. P. Yang, X. Lu, J. Sun, “Disturbance Observer Based Fast Terminal Sliding Mode Control for Lower Limb Prosthesis,” in 2019 25th International Conference on Automation and Computing (ICAC), 2019, pp. 1–6, doi: https://doi.org/10.23919/IConAC.2019.8895225
  62. Y. Wen, J. Si, X. Gao, S. Huang, H. H. Huang, “A New Powered Lower Limb Prosthesis Control Framework Based on Adaptive Dynamic Programming,” IEEE Trans Neural Netw Learn Syst, vol. 28, no. 9, pp. 2215–2220, 2017, doi: https://doi.org/10.1109/TNNLS.2016.2584559
  63. R. Gupta, R. Agarwal, “Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis,” Biocybern Biomed Eng, vol. 39, no. 3, pp. 775–788, 2019, doi: https://doi.org/10.1016/j.bbe.2019.07.002
  64. M. J. Highsmith et al., “Prosthetic interventions for people with transtibial amputation: Systematic review and meta-analysis of high-quality prospective literature and systematic reviews,” J Rehabil Res Dev, vol. 53, no. 2, pp. 157–184, 2016, doi: https://doi.org/10.1682/JRRD.2015.03.0046
  65. R. Caldwell, S. Fatone, “Technique modifications for a suction suspension version of the Northwestern University Flexible Sub-Ischial Vacuum socket,” Prosthet Orthot Int, vol. 43, no. 2, pp. 233–239, 2019, doi: https://doi.org/10.1177/0309364618798869
  66. S. Fatone, R. Caldwell, “Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation,” Prosthet Orthot Int, vol. 41, no. 3, pp. 246–250, 2017, doi: https://doi.org/10.1177/0309364616685230
  67. S. Fatone, R. Caldwell, “Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation-Part 1,” Prosthet Orthot Int, vol. 41, no. 3, pp. 237–245, 2017, doi: https://doi.org/10.1177/0309364616685229
  68. C. E. Fillauer, C. H. Pritham, K. D. Fillauer, “Evolution and Development of the Silicone Suction Socket (3S) for Below-Knee Prostheses,” JPO Journal of Prosthetics and Orthotics, vol. 1, no. 2, pp. 92–103, Jan. 1989, doi: https://doi.org/10.1097/00008526-198901000-00007
  69. R. G. Redhead, “Total surface bearing self suspending above-knee sockets/1,” Prosthet Orthot Int, vol. 3, no. 3, pp. 126–136, 1979, doi: https://doi.org/10.3109/03093647909103096
  70. J. J. Singh, J. S. Mehta, R. Kumar, and G. Sapra, “FEA simulations of Lower Limb Prosthetics,” IOP Conf Ser Mater Sci Eng, vol. 1225, no. 1, p. 012030, 2022, doi: https://doi.org/10.1088/1757-899x/1225/1/012030
  71. J. C. H. Goh, P. V. S. Lee, S. L. Toh, C. K. Ooi, “Development of an integrated CAD–FEA process for below-knee prosthetic sockets,” Clinical Biomechanics, vol. 20, no. 6, pp. 623–629, 2005, doi: https://doi.org/10.1016/j.clinbiomech.2005.02.005
  72. W. C. C. Lee, M. Zhang, “Using computational simulation to aid in the prediction of socket fit: A preliminary study,” Med Eng Phys, vol. 29, no. 8, pp. 923–929, 2007, doi: https://doi.org/10.1016/j.medengphy.2006.09.008
  73. D. P. Reynolds and M. Lord, “Interface load analysis for computer-aided design of below-knee prosthetic sockets,” Med Biol Eng Comput, vol. 30, no. 4, pp. 419 – 426, 1992, doi: https://doi.org/10.1007/BF02446180
  74. M. C. Faustini, R. R. Neptune, R. H. Crawford, “The quasi-static response of compliant prosthetic sockets for transtibial amputees using finite element methods,” Med Eng Phys, vol. 28, no. 2, pp. 114–121, 2006, doi: https://doi.org/10.1016/j.medengphy.2005.04.019
  75. C. C. Lin, C.-H. Chang, C.-L. Wu, K.-C. Chung, I. C. Liao, “Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model,” Med Eng Phys, vol. 26, no. 1, pp. 1–9, 2004, doi: https://doi.org/10.1016/S1350-4533(03)00127-9
  76. Linlin Zhang, Ming Zhu, Ling Shen, and Feng Zheng, “Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 1270–1273. doi: https://doi.org/10.1109/EMBC.2013.6609739
  77. M. M. Saunders et al., “Finite Element Analysis as a Tool for Parametric Prosthetic Foot Design and Evaluation. Technique Development in the Solid Ankle Cushioned Heel (SACH) Foot,” Comput Methods Biomech Biomed Engin, vol. 6, no. 1, pp. 75–87, 2003, doi: https://doi.org/10.1080/1025584021000048974
  78. X. Bonnet, H. Pillet, P. Fodé, F. Lavaste, W. Skalli, “Finite element modelling of an energy–storing prosthetic foot during the stance phase of transtibial amputee gait,” Proc Inst Mech Eng H, vol. 226, no. 1, pp. 70–75, 2012, doi: https://doi.org/10.1177/0954411911429534
  79. H. Tryggvason, F. Starker, C. Lecomte, F. Jonsdottir, “Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot,” Applied Sciences (Switzerland), vol. 10, no. 2, 2020, doi: https://doi.org/10.3390/app10020650
  80. M. J. Ke et al., “Influence of three different curvatures flex-foot prosthesis while single-leg standing or running: A finite element analysis study,” J Mech Med Biol, vol. 17, no. 3, 2017, doi: https://doi.org/10.1142/S0219519417500555
  81. P. Mahmoodi, S. Aristodemou, R. Ransing, N. Owen, M. Friswell, “Prosthetic foot design optimisation based on roll-over shape and ground reaction force characteristics,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 231, no. 17, pp. 3093–3103, 2017, doi: https://doi.org/10.1177/0954406216643110
  82. N. Thatte, T. Shah, H. Geyer, “Robust and adaptive lower limb prosthesis stance control via extended kalman filter-based gait phase estimation,” IEEE Robot Autom Lett, vol. 4, no. 4, pp. 3129–3136, Oct. 2019, doi: https://doi.org/10.1109/LRA.2019.2924841
  83. M. B. Francisco, D. M. Junqueira, G. A. Oliver, J. L. J. Pereira, S. S. da Cunha, G. F. Gomes, “Design optimizations of carbon fibre reinforced polymer isogrid lower limb prosthesis using particle swarm optimization and Lichtenberg algorithm,” Engineering Optimization, vol. 53, no. 11, pp. 1922–1945, 2021, doi: https://doi.org/10.1080/0305215X.2020.1839442
  84. M. J. Major, N. P. Fey, “Considering passive mechanical properties and patient user motor performance in lower limb prosthesis design optimization to enhance rehabilitation outcomes,” Physical Therapy Reviews, vol. 22, no. 3–4, pp. 202–216, 2017, doi: https://doi.org/10.1080/10833196.2017.1346033
  85. V. Rajt’úková, M. Michalíková, L. Bednarcíková, A. Balogová, J. Živčák, “Biomechanics of lower limb prostheses,” in Procedia Engineering, 2014, pp. 382–391, doi: https://doi.org/10.1016/j.proeng.2014.12.107
  86. P. Beckerle, O. Christ, T. Schürmann, J. Vogt, O. von Stryk, S. Rinderknecht, “A human–machine-centered design method for (powered) lower limb prosthetics,” Rob Auton Syst, vol. 95, pp. 1–12, 2017, doi: https://doi.org/10.1016/j.robot.2017.05.004
  87. M. P. McGrath et al., “Development of a residuum/socket interface simulator for lower limb prosthetics,” Proc Inst Mech Eng H, vol. 231, no. 3, pp. 235–242, 2017, doi: https://doi.org/10.1177/0954411917690764
  88. C. Comotti, D. Regazzoni, C. Rizzi, and A. Vitali, “Multi-material design and 3D printing method of lower limb prosthetic sockets,” in ACM International Conference Proceeding Series, Association for Computing Machinery, 2015, pp. 42–45. doi: https://doi.org/10.1145/2838944.2838955
  89. A. F. T. Mak, M. Zhang, and D. A. Boone, “State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: A review,” J Rehabil Res Dev., vol.38, no. 2, pp.161-74, 2001.
  90. J. Martin, A. Pollock, J. Hettinger, “Microprocessor Lower Limb Prosthetics: Review of Current State of the Art,” JPO Journal of Prosthetics and Orthotics, vol. 22, no. 33, 2010, doi: https://doi.org/10.1097/JPO.0b013e3181e8fe8a
  91. M. Wang, Q. Nong, Y. Liu, H. Yu, “Design of lower limb prosthetic sockets: a review,” Expert Rev Med Devices, vol. 19, no. 1, pp. 63–73, 2022, doi: https://doi.org/10.1080/17434440.2022.2020094