Publicado 2024-06-10
Palabras clave
- diseño,
- prótesis de miembro inferior,
- desarrollo de prótesis,
- control de prótesis,
- biomecánica
Cómo citar
Derechos de autor 2024 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
La revisión bibliográfica presentada a continuación contiene un compendio de la información necesaria e indispensable para tener en cuenta, a cerca del diseño y desarrollo de prótesis de miembro inferior. El documento presenta los aspectos más importantes tomados de 91 trabajos diferentes, de alto impacto, y relacionados con esta temática. Al finalizar el documento, se presenta una sección con las conclusiones y aspectos más importantes, además de mostrar los futuros desafíos y expectativas que se tienen con respeto a las prótesis de miembro inferior.
Descargas
Referencias
- M. Windrich, M. Grimmer, O. Christ, S. Rinderknecht, P. Beckerle, “Active lower limb prosthetics: A systematic review of design issues and solutions,” BioMedical Engineering Online, vol. 15. 2016, doi: https://doi.org/10.1186/s12938-016-0284-9
- C. Tudor-Locke and D. R. Bassett Jr, “How many steps/day are enough? Preliminary pedometer indices for public health,” Sports Medicine, vol. 34, no. 1, pp. 1–8, 2004.
- J. C. Gómez Beltrán, “Identificación de las personas con discapacidad en los territorios desde el rediseño del registro,” Dane: Información para Todos. Accessed: Jun. 20, 2023. [Online]. Available: https://www.dane.gov.co/files/investigaciones/discapacidad/identificacion%20en%20los%20territorios.pdf
- C. Quintero Quiroz, A. Jaramillo Zapata, M. T. De Ossa Jiménez, P. A. Villegas Bolaños, “Estudio descriptivo de condiciones del muñón en personas usuarias de prótesis de miembros inferiores,” [Online]. Available: https://revistacmfr.org/index.php/rcmfr/article/view/141
- NASDAB (National Amputee Statistical Database), “The Amputee statistical database for the United Kingdom 2006/07,” BibSonomy. 2009.
- Presidencia de la República de Colombia, “Estadísticas de Asistencia Integral a las Víctimas de MAP y MUSE,” Acción contra minas. [Online]. Available: http://www.accioncontraminas.gov.co/Estadisticas/estadisticas-de-victimas
- N. L. Dudek, M. B. Marks, S. C. Marshall, J. P. Chardon, “Dermatologic conditions associated with use of a lower-extremity prosthesis,” Arch Phys Med Rehabil, vol. 86, no. 4, pp. 659–663, 2005, doi: https://doi.org/10.1016/j.apmr.2004.09.003
- F. Martínez, A. Olmos, J. M. Rodríguez, A. Claudio, S. Vergara, B. M. González, “Propuesta de estrategia de control para prótesis transfemorales inteligentes,” in Memorias del XVI Congreso Latinoamericano de Control Automático, CLCA 2014, Cancún: CLCA, 2014.
- M. Asif et al., “Advancements, Trends and Future Prospects of Lower Limb Prosthesis,” IEEE Access, vol. 9, pp. 85956 – 85977, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3086807
- R. Safari, “Lower limb prosthetic interfaces: Clinical and technological advancement and potential future direction,” Prosthet Orthot Int, vol. 44, no. 6, pp. 384 – 401, 2020, doi: https://doi.org/10.1177/0309364620969226
- H. Meulenbelt, J. Geertzen, M. Jonkman, P. Dijkstra, “Skin Problems of the Stump in Lower Limb Amputees: 1. A Clinical Study,” Acta Dermato Venereologica, vol. 91, no. 2, pp. 173–177, 2011, doi: https://doi.org/10.2340/00015555-1040
- N. L. Dudek, M. B. Marks, S. C. Marshall, “Skin Problems in an Amputee Clinic,” Am J Phys Med Rehabil, vol. 85, no. 5, pp. 424 – 429, 2006, doi: https://doi.org/10.1097/01.phm.0000214272.01147.5a
- K. Hachisuka, T. Nakamura, S. Ohmine, H. Shitama, K. Shinkoda, “Hygiene problems of residual limb and silicone liners in transtibial amputees wearing the total surface bearing socket,” Arch Phys Med Rehabil, vol. 82, no. 9, pp. 1286 – 1290, 2001, doi: https://doi.org/10.1053/apmr.2001.25154
- M. J. Hall, D. G. Shurr, M. J. VanBeek, M. B. Zimmerman, “The Prevalence of Dermatological Problems for Transtibial Amputees Using a Roll-on Liner,” JPO Journal of Prosthetics and Orthotics, vol. 20, no. 4, pp. 134 – 139, Oct. 2008, doi: https://doi.org/10.1097/JPO.0b013e31818ad38a
- T. R. Dillingham, L. E. Pezzin, E. J. MacKenzie, A. R. Burgess, “Use and Satisfaction with Prosthetic Devices Among Persons with Trauma-Related Amputations,” Am J Phys Med Rehabil, vol. 80, no. 8, pp. 563 – 571, 2001, doi: https://doi.org/10.1097/00002060-200108000-00003
- H. E. Meulenbelt, J. H. Geertzen, M. F. Jonkman, P. U. Dijkstra, “Determinants of Skin Problems of the Stump in Lower-Limb Amputees,” Arch Phys Med Rehabil, vol. 90, no. 1, pp. 74 – 81, 2009, doi: https://doi.org/10.1016/j.apmr.2008.07.015
- K. Ghoseiri, M. R. Safari, “Prevalence of heat and perspiration discomfort inside prostheses: Literature review,” J Rehabil Res Dev, vol. 51, no. 6, pp. 855–868, 2014, doi: https://doi.org/10.1682/JRRD.2013.06.0133
- C. Quintero Quiroz, V. Z. Pérez, “Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems,” Revista Facultad de Medicina, vol. 67, no. 1, pp. 117–126, 2019. doi: https://doi.org/10.15446/revfacmed.v67n1.64470
- C. E. Roffman, J. Buchanan, and G. T. Allison, “Predictors of non-use of prostheses by people with lower limb amputation after discharge from rehabilitation: development and validation of clinical prediction rules,” J Physiother, vol. 60, no. 4, pp. 224–231, 2014, doi: https://doi.org/10.1016/j.jphys.2014.09.003
- D. Durmus et al., “The relationship between prosthesis use, phantom pain and psychiatric symptoms in male traumatic limb amputees,” Compr Psychiatry, vol. 59, pp. 45–53, 2015, doi: https://doi.org/10.1016/j.comppsych.2014.10.018
- G. E. Reiber et al., “Servicemembers and veterans with major traumatic limb loss from Vietnam war and OIF/OEF conflicts: Survey methods, participants, and summary findings,” The Journal of Rehabilitation Research and Development, vol. 47, no. 4, p. 275, 2010, doi: https://doi.org/10.1682/JRRD.2010.01.0009
- R. L. O. Ramos, A. D. Baryolo Cardoso, “Rehabilitación del Amputado de Miembro Inferior,” Medicina de Rehabilitación Cubana, 2023. [Online]. Available: http://www.sld.cu/sitios/rehabilitacion/
- J. E. Zamudio Palacios et al., “Modelo dinámico de una prótesis transtibial para ciclistas paralímpicos,” in II Congreso Internacional en Inteligencia Ambiental, Ingeniería de Software y Salud Electrónica y Móvil – AmITIC, 2018, pp. 151–157. [Online]. Available: https://revistas.utp.ac.pa/index.php/memoutp/article/view/1849
- F. Martínez, A. Olmos, J. M. Rodríguez, A. Claudio, S. Vergara, and B. M. González, “Propuesta de estrategia de control para prótesis transfemorales inteligentes,” in XVI Congreso Latinoamericano de Control Automático, CLCA, Cancún, Oct. 2014. [Online]. Available: https://amca.mx/memorias/amca2014/media/files/0201.pdf
- C. Quintero-Quiroz, V. Z. Pérez, “Materials for lower limb prosthetic and orthotic interfaces and sockets: Evolution and associated skin problems,” Revista Facultad de Medicina, vol. 67, no. 1, pp. 117–126, 2019, doi: https://doi.org/10.15446/revfacmed.v67n1.64470
- P. K. Kumar, M. Charan, S. Kanagaraj, “Trends and Challenges in Lower Limb Prosthesis,” IEEE Potentials, vol. 36, no. 1, pp. 19–23, 2017, doi: https://doi.org/10.1109/MPOT.2016.2614756
- JD Hsu, JW Michael, and JR Fisk, AAOS Atlas of Orthoses and Assistive Devices, Fourth Edition. Mosby Elsevier, 2008.
- S. L. Phillips, W. Craelius, “Material properties of selected prosthetic laminates,” Journal of Prosthetics and Orthotics, vol. 17, no. 1, pp. 27–34, 2005, doi: https://doi.org/10.1097/00008526-200501000-00007
- X. Jia, M. Zhang, W. C. C. Lee, “Load transfer mechanics between trans-tibial prosthetic socket and residual limb—dynamic effects,” J Biomech, vol. 37, no. 9, pp. 1371–1377, 2004, doi: https://doi.org/10.1016/j.jbiomech.2003.12.024
- G. K. Klute, B. C. Glaister, J. S. Berge, “Prosthetic Liners for Lower Limb Amputees,” Prosthet Orthot Int, vol. 34, no. 2, pp. 146–153, 2010, doi: https://doi.org/10.3109/03093641003645528
- J. Z. Laferrier, R. Gailey, “Advances in Lower-limb Prosthetic Technology,” Phys Med Rehabil Clin N Am, vol. 21, no. 1, pp. 87–110, 2010, doi: https://doi.org/10.1016/j.pmr.2009.08.003
- S. Arun, S. Kanagaraj, “Performance enhancement of epoxy based sandwich composites using multiwalled carbon nanotubes for the application of sockets in trans-femoral amputees,” J Mech Behav Biomed Mater, vol. 59, pp. 1–10, 2016, doi: https://doi.org/10.1016/j.jmbbm.2015.12.013
- M.-S. Scholz et al., “The use of composite materials in modern orthopaedic medicine and prosthetic devices: A review,” Compos Sci Technol, vol. 71, no. 16, pp. 1791 – 1803, 2011, doi: https://doi.org/10.1016/j.compscitech.2011.08.017
- Å. Bartonek, M. Eriksson, E. M. Gutierrez-Farewik, “A new carbon fibre spring orthosis for children with plantarflexor weakness,” Gait Posture, vol. 25, no. 4, pp. 652–656, Apr. 2007, doi: https://doi.org/10.1016/j.gaitpost.2006.07.013
- D. Datta, S. K. Vaidya, J. Howitt, L. Gopalan, “Outcome of fitting an ICEROSS prosthesis,” Prosthet Orthot Int, vol. 20, no. 2, pp. 111–115, 1996, doi: https://doi.org/10.3109/03093649609164427
- C. Comotti, D. Regazzoni, C. Rizzi, A. Vitali, “Multi-material design and 3D printing method of lower limb prosthetic sockets,” in ACM International Conference Proceeding Series, Association for Computing Machinery, Oct. 2015, pp. 42–45, doi: https://doi.org/10.1145/2838944.2838955
- R. Miclaus, A. Repanovici, and N. Roman, “Biomaterials: Polylactic acid and 3D printing processes for orthosis and prosthesis,” Materiale Plastice, vol. 54, no. 1, pp. 98–102, 2017, doi: https://doi.org/10.37358/mp.17.1.4794
- K.-T. Nguyen, L. Benabou, and S. Alfayad, “Systematic Review of Prosthetic Socket Fabrication using 3D printing,” in Proceedings of the 2018 4th International Conference on Mechatronics and Robotics Engineering, 2018, pp. 137–141, doi: https://doi.org/10.1145/3191477.3191506
- L. Paterno, M. Ibrahimi, E. Gruppioni, A. Menciassi, L. Ricotti, “Sockets for Limb Prostheses: A Review of Existing Technologies and Open Challenges,” IEEE Trans Biomed Eng, vol. 65, no. 9, pp. 1996–2010, 2018, doi: https://doi.org/10.1109/TBME.2017.2775100
- Z. Tao, H.-J. Ahn, C. Lian, K.-H. Lee, C.-H. Lee, “Design and optimization of prosthetic foot by using polylactic acid 3D printing,” Journal of Mechanical Science and Technology, vol. 31, no. 5, pp. 2393–2398, 2017, doi: https://doi.org/10.1007/s12206-017-0436-2
- P. M. Stevens, R. R. DePalma, S. R. Wurdeman, “Transtibial Socket Design, Interface, and Suspension: A Clinical Practice Guideline,” JPO Journal of Prosthetics and Orthotics, vol. 31, no. 3, pp. 172–178, Jul. 2019, doi: https://doi.org/10.1097/JPO.0000000000000219
- A. Staros, “The SACH (Solid-Ankle Cushion-Heel) Foot,” Orthotics and Prosthetics, vol. 11, no. 2, pp. 23–31, 1957.
- Blatchford, “Orion3.” [Online]. Available: https://www.blatchfordmobility.com/en-gb/products/knees/orion3
- Steeper Group, “Prosthetic Knees Freedom Plie 3.” 2023. [Online]. Available: https://www.steepergroup.com/prosthetics/lower-limb-prosthetics/knees/plie-3/
- Ottobock, “Genium.” [Online]. Available: https://shop.ottobock.us/Prosthetics/Lower-Limb-Prosthetics/Knees---Microprocessor/Genium/Genium/p/3B1-3#product-specification-section
- Össur, “RHEO KNEE.” [Online]. Available: https://www.ossur.com/en-us/prosthetics/knees/rheo-knee
- H. M. Herr, A. M. Grabowski, “Bionic ankle–foot prosthesis normalizes walking gait for persons with leg amputation,” Proceedings of the Royal Society B: Biological Sciences, vol. 279, no. 1728, pp. 457–464, 2012, doi: https://doi.org/10.1098/rspb.2011.1194
- Össur, “Power Knee.” [Online]. Available: https://www.ossur.com/en-us/prosthetics/knees/power-knee
- T. Chin et al., “Successful prosthetic fitting of elderly trans-femoral amputees with Intelligent Prosthesis (IP),” Prosthet Orthot Int, vol. 31, no. 3, pp. 271–276, Sep. 2007, doi: https://doi.org/10.1080/03093640601040152
- D. Datta, J. Howitt, “Conventional versus microchip controlled pneumatic swing phase control for trans-femoral amputees,” Prosthet Orthot Int, vol. 22, no. 2, pp. 129–135, 1998, doi: https://doi.org/10.3109/03093649809164474
- M. Bellmann, T. Schmalz, S. Blumentritt, “Comparative Biomechanical Analysis of Current Microprocessor-Controlled Prosthetic Knee Joints,” Arch Phys Med Rehabil, vol. 91, no. 4, pp. 644–652, Apr. 2010, doi: https://doi.org/10.1016/j.apmr.2009.12.014
- D. C. Toledo-Pérez, M. A. Martínez-Prado, R. A. Gómez-Loenzo, W. J. Paredes-García, J. Rodríguez-Reséndiz, “A study of movement classification of the lower limb based on up to 4-EMG channels,” Electronics (Switzerland), vol. 8, no. 3, Mar. 2019, doi: https://doi.org/10.3390/electronics8030259
- K. Yuan, J. Zhu, Q. Wang, L. Wang, “Finite-state control of powered below-knee prosthesis with ankle and toe,” in IFAC Proceedings Volumes (IFAC-PapersOnline), 2011, pp. 2865–2870, doi: https://doi.org/10.3182/20110828-6-IT-1002.03064
- S. K. Au, H. Herr, J. Weber, and E. C. Martinez-Villalpando, “Powered Ankle-Foot Prosthesis for the Improvement of Amputee Ambulation,” in 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007, pp. 3020–3026, doi: https://doi.org/10.1109/IEMBS.2007.4352965
- B. E. Lawson, B. Ruhe, A. Shultz, M. Goldfarb, “A Powered Prosthetic Intervention for Bilateral Transfemoral Amputees,” IEEE Trans Biomed Eng, vol. 62, no. 4, pp. 1042–1050, 2015, doi: https://doi.org/10.1109/TBME.2014.2334616
- N. P. Fey, A. M. Simon, A. J. Young, L. J. Hargrove, “Controlling Knee Swing Initiation and Ankle Plantarflexion With an Active Prosthesis on Level and Inclined Surfaces at Variable Walking Speeds,” IEEE J Transl Eng Health Med, vol. 2, pp. 1–12, 2014, doi: https://doi.org/10.1109/JTEHM.2014.2343228
- R. D. Gregg, T. Lenzi, L. J. Hargrove, J. W. Sensinger, “Virtual Constraint Control of a Powered Prosthetic Leg: From Simulation to Experiments With Transfemoral Amputees,” IEEE Transactions on Robotics, vol. 30, no. 6, pp. 1455–1471, 2014, doi: https://doi.org/10.1109/TRO.2014.2361937
- N. Anil Kumar, W. Hong, and P. Hur, Impedance Control of a Transfemoral Prosthesis using Continuously Varying Ankle Impedances and Multiple Equilibria. 2019.
- K. Yuan, Q. Wang, J. Zhu, L. Wang, “A Hierarchical Control Scheme for Smooth Transitions between Level Ground and Ramps with a Robotic Transtibial Prosthesis,” IFAC Proceedings Volumes, vol. 47, no. 3, pp. 3527–3532, 2014, doi: https://doi.org/10.3182/20140824-6-ZA-1003.02667
- R. F. Campos, J. B. Machado, S. Givigi, and L. H. de C. Ferreira, “Control of a Mechanical Knee Based on Predictive Control Techniques,” in 2019 IEEE Canadian Conference of Electrical and Computer Engineering (CCECE), 2019, pp. 1–4, doi: https://doi.org/10.1109/CCECE.2019.8861754
- P. Yang, X. Lu, J. Sun, “Disturbance Observer Based Fast Terminal Sliding Mode Control for Lower Limb Prosthesis,” in 2019 25th International Conference on Automation and Computing (ICAC), 2019, pp. 1–6, doi: https://doi.org/10.23919/IConAC.2019.8895225
- Y. Wen, J. Si, X. Gao, S. Huang, H. H. Huang, “A New Powered Lower Limb Prosthesis Control Framework Based on Adaptive Dynamic Programming,” IEEE Trans Neural Netw Learn Syst, vol. 28, no. 9, pp. 2215–2220, 2017, doi: https://doi.org/10.1109/TNNLS.2016.2584559
- R. Gupta, R. Agarwal, “Single channel EMG-based continuous terrain identification with simple classifier for lower limb prosthesis,” Biocybern Biomed Eng, vol. 39, no. 3, pp. 775–788, 2019, doi: https://doi.org/10.1016/j.bbe.2019.07.002
- M. J. Highsmith et al., “Prosthetic interventions for people with transtibial amputation: Systematic review and meta-analysis of high-quality prospective literature and systematic reviews,” J Rehabil Res Dev, vol. 53, no. 2, pp. 157–184, 2016, doi: https://doi.org/10.1682/JRRD.2015.03.0046
- R. Caldwell, S. Fatone, “Technique modifications for a suction suspension version of the Northwestern University Flexible Sub-Ischial Vacuum socket,” Prosthet Orthot Int, vol. 43, no. 2, pp. 233–239, 2019, doi: https://doi.org/10.1177/0309364618798869
- S. Fatone, R. Caldwell, “Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation,” Prosthet Orthot Int, vol. 41, no. 3, pp. 246–250, 2017, doi: https://doi.org/10.1177/0309364616685230
- S. Fatone, R. Caldwell, “Northwestern University Flexible Subischial Vacuum Socket for persons with transfemoral amputation-Part 1,” Prosthet Orthot Int, vol. 41, no. 3, pp. 237–245, 2017, doi: https://doi.org/10.1177/0309364616685229
- C. E. Fillauer, C. H. Pritham, K. D. Fillauer, “Evolution and Development of the Silicone Suction Socket (3S) for Below-Knee Prostheses,” JPO Journal of Prosthetics and Orthotics, vol. 1, no. 2, pp. 92–103, Jan. 1989, doi: https://doi.org/10.1097/00008526-198901000-00007
- R. G. Redhead, “Total surface bearing self suspending above-knee sockets/1,” Prosthet Orthot Int, vol. 3, no. 3, pp. 126–136, 1979, doi: https://doi.org/10.3109/03093647909103096
- J. J. Singh, J. S. Mehta, R. Kumar, and G. Sapra, “FEA simulations of Lower Limb Prosthetics,” IOP Conf Ser Mater Sci Eng, vol. 1225, no. 1, p. 012030, 2022, doi: https://doi.org/10.1088/1757-899x/1225/1/012030
- J. C. H. Goh, P. V. S. Lee, S. L. Toh, C. K. Ooi, “Development of an integrated CAD–FEA process for below-knee prosthetic sockets,” Clinical Biomechanics, vol. 20, no. 6, pp. 623–629, 2005, doi: https://doi.org/10.1016/j.clinbiomech.2005.02.005
- W. C. C. Lee, M. Zhang, “Using computational simulation to aid in the prediction of socket fit: A preliminary study,” Med Eng Phys, vol. 29, no. 8, pp. 923–929, 2007, doi: https://doi.org/10.1016/j.medengphy.2006.09.008
- D. P. Reynolds and M. Lord, “Interface load analysis for computer-aided design of below-knee prosthetic sockets,” Med Biol Eng Comput, vol. 30, no. 4, pp. 419 – 426, 1992, doi: https://doi.org/10.1007/BF02446180
- M. C. Faustini, R. R. Neptune, R. H. Crawford, “The quasi-static response of compliant prosthetic sockets for transtibial amputees using finite element methods,” Med Eng Phys, vol. 28, no. 2, pp. 114–121, 2006, doi: https://doi.org/10.1016/j.medengphy.2005.04.019
- C. C. Lin, C.-H. Chang, C.-L. Wu, K.-C. Chung, I. C. Liao, “Effects of liner stiffness for trans-tibial prosthesis: a finite element contact model,” Med Eng Phys, vol. 26, no. 1, pp. 1–9, 2004, doi: https://doi.org/10.1016/S1350-4533(03)00127-9
- Linlin Zhang, Ming Zhu, Ling Shen, and Feng Zheng, “Finite element analysis of the contact interface between trans-femoral stump and prosthetic socket,” in 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2013, pp. 1270–1273. doi: https://doi.org/10.1109/EMBC.2013.6609739
- M. M. Saunders et al., “Finite Element Analysis as a Tool for Parametric Prosthetic Foot Design and Evaluation. Technique Development in the Solid Ankle Cushioned Heel (SACH) Foot,” Comput Methods Biomech Biomed Engin, vol. 6, no. 1, pp. 75–87, 2003, doi: https://doi.org/10.1080/1025584021000048974
- X. Bonnet, H. Pillet, P. Fodé, F. Lavaste, W. Skalli, “Finite element modelling of an energy–storing prosthetic foot during the stance phase of transtibial amputee gait,” Proc Inst Mech Eng H, vol. 226, no. 1, pp. 70–75, 2012, doi: https://doi.org/10.1177/0954411911429534
- H. Tryggvason, F. Starker, C. Lecomte, F. Jonsdottir, “Use of dynamic FEA for design modification and energy analysis of a variable stiffness prosthetic foot,” Applied Sciences (Switzerland), vol. 10, no. 2, 2020, doi: https://doi.org/10.3390/app10020650
- M. J. Ke et al., “Influence of three different curvatures flex-foot prosthesis while single-leg standing or running: A finite element analysis study,” J Mech Med Biol, vol. 17, no. 3, 2017, doi: https://doi.org/10.1142/S0219519417500555
- P. Mahmoodi, S. Aristodemou, R. Ransing, N. Owen, M. Friswell, “Prosthetic foot design optimisation based on roll-over shape and ground reaction force characteristics,” Proc Inst Mech Eng C J Mech Eng Sci, vol. 231, no. 17, pp. 3093–3103, 2017, doi: https://doi.org/10.1177/0954406216643110
- N. Thatte, T. Shah, H. Geyer, “Robust and adaptive lower limb prosthesis stance control via extended kalman filter-based gait phase estimation,” IEEE Robot Autom Lett, vol. 4, no. 4, pp. 3129–3136, Oct. 2019, doi: https://doi.org/10.1109/LRA.2019.2924841
- M. B. Francisco, D. M. Junqueira, G. A. Oliver, J. L. J. Pereira, S. S. da Cunha, G. F. Gomes, “Design optimizations of carbon fibre reinforced polymer isogrid lower limb prosthesis using particle swarm optimization and Lichtenberg algorithm,” Engineering Optimization, vol. 53, no. 11, pp. 1922–1945, 2021, doi: https://doi.org/10.1080/0305215X.2020.1839442
- M. J. Major, N. P. Fey, “Considering passive mechanical properties and patient user motor performance in lower limb prosthesis design optimization to enhance rehabilitation outcomes,” Physical Therapy Reviews, vol. 22, no. 3–4, pp. 202–216, 2017, doi: https://doi.org/10.1080/10833196.2017.1346033
- V. Rajt’úková, M. Michalíková, L. Bednarcíková, A. Balogová, J. Živčák, “Biomechanics of lower limb prostheses,” in Procedia Engineering, 2014, pp. 382–391, doi: https://doi.org/10.1016/j.proeng.2014.12.107
- P. Beckerle, O. Christ, T. Schürmann, J. Vogt, O. von Stryk, S. Rinderknecht, “A human–machine-centered design method for (powered) lower limb prosthetics,” Rob Auton Syst, vol. 95, pp. 1–12, 2017, doi: https://doi.org/10.1016/j.robot.2017.05.004
- M. P. McGrath et al., “Development of a residuum/socket interface simulator for lower limb prosthetics,” Proc Inst Mech Eng H, vol. 231, no. 3, pp. 235–242, 2017, doi: https://doi.org/10.1177/0954411917690764
- C. Comotti, D. Regazzoni, C. Rizzi, and A. Vitali, “Multi-material design and 3D printing method of lower limb prosthetic sockets,” in ACM International Conference Proceeding Series, Association for Computing Machinery, 2015, pp. 42–45. doi: https://doi.org/10.1145/2838944.2838955
- A. F. T. Mak, M. Zhang, and D. A. Boone, “State-of-the-art research in lower-limb prosthetic biomechanics-socket interface: A review,” J Rehabil Res Dev., vol.38, no. 2, pp.161-74, 2001.
- J. Martin, A. Pollock, J. Hettinger, “Microprocessor Lower Limb Prosthetics: Review of Current State of the Art,” JPO Journal of Prosthetics and Orthotics, vol. 22, no. 33, 2010, doi: https://doi.org/10.1097/JPO.0b013e3181e8fe8a
- M. Wang, Q. Nong, Y. Liu, H. Yu, “Design of lower limb prosthetic sockets: a review,” Expert Rev Med Devices, vol. 19, no. 1, pp. 63–73, 2022, doi: https://doi.org/10.1080/17434440.2022.2020094