Propuesta metodológica: primeros pasos para la implementación de programas de gestión de la demanda en Colombia
Publicado 2023-11-29
Palabras clave
- generación distribuida,
- generación variable,
- análisis técnico-económico,
- capacidad de alojamiento,
- simulación técnica
Cómo citar
Derechos de autor 2023 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
La electrificación de áreas aisladas o rurales conlleva desafíos técnicos, económicos y sociales que diferencian la operación de estas redes en comparación con la operación tradicional de los grandes sistemas eléctricos de energía, como la dependencia del transporte aéreo o fluvial de combustible para el suministro de las plantas generadoras, la falta de medición individual y la infraestructura obsoleta de las redes de distribución. Por lo tanto, este artículo propone una metodología híbrida para el estudio de un caso colombiano analizando el desarrollo de programas para el uso racional de la electricidad y la eficiencia energética en áreas aisladas. Estos primeros pasos están relacionados con el diagnóstico de las condiciones actuales de la red eléctrica, la identificación de los actores que pueden influir en la regulación del servicio eléctrico en el área y la propuesta de mecanismos que permitan promover el uso racional y eficiente de la electricidad.
Descargas
Referencias
- S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active Distribution Networks. Institution of Engineering and Technology, 2009, doi: https://doi.org/10.1049/PBRN006E
- J. Kwac and R. Rajagopal, “Demand response targeting using big data analytics,” in 2013 IEEE International Conference on Big Data, IEEE, Oct. 2013, pp. 683–690, doi: https://doi.org/10.1109/BigData.2013.6691643
- S. N. Bragagnolo, J. C. Vaschetti, F. Magnago, and J. C. Gomez-Targarona, “Gestión de la demanda en las redes inteligentes. Perspectiva y control desde el usuario y la distribuidora,” Información tecnológica, vol. 31, no. 3, pp. 159–170, 2020, doi: https://doi.org/10.4067/S071807642020000300159
- P. Palensky and D. Dietrich, “Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads,” IEEE Trans Industr Inform, vol. 7, no. 3, pp. 381–388, 2011, doi: https://doi.org/10.1109/TII.2011.2158841
- A. J. Albarakati et al., “Microgrid energy management and monitoring systems: A comprehensive review,” Front Energy Res, vol. 10, 2022, doi: https://doi.org/10.3389/fenrg.2022.1097858
- M. Behrangrad, “A review of demand side management business models in the electricity market,” Renewable and Sustainable Energy Reviews, vol. 47, pp. 270–283, Jul. 2015, doi: https://doi.org/10.1016/j.rser.2015.03.033
- G. Ferruzzi, G. Graditi, F. Rossi, and A. Russo, “Optimal Operation of a Residential Microgrid: The Role of Demand Side Management,” Intelligent Industrial Systems, vol. 1, no. 1, pp. 61–82, 2015, doi: https://doi.org/10.1007/s40903-015-0012-y
- M. R. Narimani, P. J. Nauert, J.-Y. Joo, and M. L. Crow, “Reliability assesment of power system at the presence of demand side management,” in 2016 IEEE Power and Energy Conference at Illinois (PECI), 2016, pp. 1–5, doi: https://doi.org/10.1109/PECI.2016.7459222
- E. Oh, “Fair Virtual Energy Storage System Operation for Smart Energy Communities,” Sustainability, vol. 14, no. 15, p. 9413, Aug. 2022, doi: https://doi.org/10.3390/su14159413
- Fedit, “Smart Grids Y La Evolución De La Red Eléctrica,” Revista Educación en Ingeniería, vol. 8, no. 15, 2011.
- D. Neves, M. C. Brito, and C. A. Silva, “Impact of solar and wind forecast uncertainties on demand response of isolated microgrids,” Renew Energy, vol. 87, pp. 1003–1015, Mar. 2016, doi: https://doi.org/10.1016/j.renene.2015.08.075
- C. Eid, P. Codani, Y. Perez, J. Reneses, and R. Hakvoort, “Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 237–247, 2016, doi: https://doi.org/10.1016/j.rser.2016.06.008
- Federal Energy Regulatory Commission, “Benefits of demand response in electricity markets and recommendations for achieving them,” pp. 1–122, 2006, [Online]. Available: https://www.energy.gov/oe/articles/benefits-demandresponse-electricity-markets-and-recommendationsachieving-them-report
- F. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems: A review, application and implementation strategy,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 343–350, May 2015, doi: https://doi.org/10.1016/j.rser.2015.01.062
- E. Oh, “Community Solar Operation Strategy for Smart Energy Communities Considering Resource Fairness,” Applied Sciences, vol. 12, no. 24, p. 12867, 2022, doi: https://doi.org/10.3390/app122412867
- R. Rashed Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on Advanced Metering Infrastructure,” International Journal of Electrical Power & Energy Systems, vol. 63, pp. 473–484, 2014, doi: https://doi.org/10.1016/j.ijepes.2014.06.025
- Q. Cai, Q. Xu, J. Qing, G. Shi, and Q.-M. Liang, “Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities,” Energy, vol. 261, p. 125293, 2022, doi: https://doi.org/10.1016/j.energy.2022.125293
- A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, “Demand Dispatch,” IEEE Power and Energy Magazine, vol. 8, no. 3, pp. 20–29, 2010, doi: https://doi.org/10.1109/MPE.2010.936349
- V. Tomat, A. P. Ramallo-González, A. SkarmetaGómez, G. Georgopoulos, and P. Papadopoulos, “Insights into End Users’ Acceptance and Participation in Energy Flexibility Strategies,” Buildings, vol. 13, no. 2, p. 461, Feb. 2023, doi: https://doi.org/10.3390/buildings13020461
- M. K. Kiptoo, O. B. Adewuyi, H. O. R. Howlader, A. Nakadomari, and T. Senjyu, “Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies,” Energies (Basel), vol. 16, no. 10, p. 4147, May 2023, doi: https://doi.org/10.3390/en16104147
- D. López García, “Caracterización de un esquema remunerativo para la participación de la demanda en la prestación del servicio complementario de control de frecuencia en el mercado eléctrico colombiano,” Universidad Nacional de Colombia, 2019.
- D. López García, J. D. Beltrán Gallego, and S. X. Carvajal Quintero, “Proposing Dynamic Pricing as an Alternative to Improve Technical and Economic Conditions in Rural Electrification: A Case Study from Colombia,” Sustainability, vol. 15, no. 10, p. 7985, 2023, doi: https://doi.org/10.3390/su15107985
- A. Molina-Garcia, F. Bouffard, and D. S. Kirschen, “Decentralized Demand-Side Contribution to Primary Frequency Control,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 411–419, 2011, doi: https://doi.org/10.1109/TPWRS.2010.2048223
- A. Rodriguez Zabala, D. López-García, S. X. Carvajal-Quintero, and A. Arango Manrique, “A Comprehensive Review of Sustainability in Isolated Colombian Microgrids,” Tecnura, vol. 25, no. 70, pp. 126–145, Oct. 2021, doi: https://doi.org/10.14483/22487638.18619
- C. Kolokathis, “Designing retail electricity tariffs for a successful Energy Union,” Dublin, Sep. 2018. [Online]. Available: https://www.raponline.org/wpcontent/uploads/2018/10/RAP_CK-Network-TariffDesign-for-a-Smart-Future_Citizens-EnergyForum_20_09_2018_2.pdf
- J. C. Oviedo-Cepeda, I. Serna-Suárez, G. OsmaPinto, C. Duarte, J. Solano, and H. A. Gabbar, “Design of tariff schemes as demand response mechanisms for stand-alone microgrids planning,” Energy, vol. 211, p. 119028, 2020, doi: https://doi.org/10.1016/j.energy.2020.119028
- J. F. García Franco, “Diseño de Programas de Uso Racional y Eficiente de la Energía Eléctrica en Zonas No Interconectadas en Colombia,”, Universidad Nacional de Colombia [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/78 113/1053834460.2020.pdf
- J. N. Adams, Z. D. Bélafi, M. Horváth, J. B. Kocsis, and T. Csoknyai, “How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review,” Energies (Basel), vol. 14, no. 9, p. 2502, 2021, doi: https://doi.org/10.3390/en14092502
- A. Faruqui, R. Hledik, and J. Palmer, “TimeVarying and Dynamic Rate Design,” 2012. [Online]. Available: https://hepg.hks.harvard.edu/sites/hwpi.harvard.edu/file/hepg/files/rap_faruquihledikpalmer_timevaryingdynamicratedesign_2012_jul_23.pdf?m=1523367839
- International Energy Agency - IEA, “World Energy Outlook,” 2018. Paris. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2018
- U. Zafar, S. Bayhan, and A. Sanfilippo, “Home Energy Management System Concepts, Configurations, and Technologies for the Smart Grid,” IEEE Access, vol. 8, pp. 119271 – 119286, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3005244
- R. Hidalgo-Leon et al., “Feasibility Study for OffGrid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador,” Energies (Basel), vol. 15, no. 5, p. 1776, Feb. 2022, doi: https://doi.org/10.3390/en15051776
- A. de Almeida, N. Quaresma, and E. Biosse, “The role of energy efficiency and renewable energies to accelerate sustainable energy access — a perspective case study of Mozambique,” Energy Effic, vol. 15, no. 6, p. 36, Aug. 2022, doi: https://doi.org/10.1007/s12053-022-10045-w
- J. F. Bustos González, A. L. Sepúlveda, and K. T. Aponte, “Zonas no interconectadas eléctricamente en Colombia: problemas y perspectiva,” Econografos Esc. Econ., 2014. [Online]. Available: https://fce.unal.edu.co/docspublicaciones/images/documentos-econografoseconomia-65.pdf
- D. López-García, A. Arango-Manrique, and S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm,” TecnoLógicas, vol. 21, no. 42, pp. 13–30, 2018, doi: https://doi.org/10.22430/22565337.774
- I. Granit, “What makes Colombia’s indigenous peoples adopt microgrids? Social acceptance and financial constraints in renewable energy diffusion,” Energy Res Soc Sci, vol. 101, p. 103132, 2023, doi: https://doi.org/10.1016/j.erss.2023.103132
- IPSE, “Soluciones Energéticas para las Zonas No Interconectadas de Colombia,” 2014. [Online]. Available: https://www.minminas.gov.co/documents/10180/742159/09C-SolucionesEnergeticasZNI-IPSE.pdf/2871b35deaf7-4787-b778-ee73b18dbc0e
- Superintendencia de Servicios Públicos Domiciliarios, “Zonas No Interconectadas – Informe Sectorial de la prestación del servicio de energía eléctrica 2021,” 2021. [Online]. Available: https://www.superservicios.gov.co/sites/default/files/inline-files/informe_sectorial_zni_2021%20%281%29.pdf
- L. C. M. Blasques and J. T. Pinho, “Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration,” Energy Policy, vol. 45, pp. 721–729, 2012, doi: https://doi.org/10.1016/J.ENPOL.2012.03.028
- IPSE, “Caracterización de las ZNI,” 2022.
- IPSE, “Boletín mensual de localidades con telemetría - junio 2022,” 2022. [Online]. Available: https://ipse.gov.co/wpcontent/uploads/2022/07/Boletin%20Datos%20IPSE%20-%20Junio%202022.pdf
- Unidad de planeación Minero Enérgetica - UPME, “Plan Energético Nacional 2020 - 2050,” Bogotá D.C., 2019. [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf
- R. Hidalgo-Leon et al., “Feasibility Study for OffGrid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador,” Energies (Basel), vol. 15, no. 5, p. 1776, 2022, doi: https://doi.org/10.3390/en15051776
- Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Instituto De Planificación Y Promoción De Soluciones Energéticas Para Las Zni. Informe Rendición Social De Cuentas,” no. 9, pp. 1–99, 2017. [Online]. Available: https://ipse.gov.co/documento_planeacion/documento/rendicion_de_cuentas/2017/Informe%20de%20Gesti%C3%B3n%202017%20-%20FinalWeb.pdf
- N. Esteve Gómez, “Energización de las zonas no interconectadas a partir de las energías renovables solar y eólica,” Bogotá D.C., 2011. [Online]. Available: https://repository.javeriana.edu.co/bitstream/handle/10554/6078/tesis121.pdf
- Superintendencia de Servicios Públicos Domiciliarios, “Zonas No Interconectadas ZNI Diagnóstico de la prestación del servicio de energía eléctrica 2018,” 2018. [Online]. Available: https://www.superservicios.gov.co/sites/default/files/inline-files/diag_zni_2018_7122018.pdf
- A. A. Eras-Almeida, T. Vásquez-Hernández, M. J. Hurtado-Moncada, and M. A. Egido-Aguilera, “A Comprehensive Evaluation of Off-Grid Photovoltaic Experiences in Non-Interconnected Zones of Colombia: Integrating a Sustainable Perspective,” Energies (Basel), vol. 16, no. 5, p. 2292, 2023, doi: https://doi.org/10.3390/en16052292
- BC NOTICIAS, “Director de Energía del Ministerio de Minas y GENSA cumplieron cita con comunidad del Vaupés.” 2018. [Online]. Available: https://www.bcnoticias.com.co/director-de-energia-delministerio-de-minas-y-gensa-cumplieron-cita-concomunidad-del-vaupes/
- Superintendencia de Servicios Públicos Domiciliarios, “Diagnóstico de la Calidad del Servicio de Energía Eléctrica en Colombia 2018,” 2019. [Online]. Available: https://www.superservicios.gov.co/sites/default/files/inlinefiles/diagnostico_calidad_servicio_2018%20%281%29.pdf
- El Heraldo, “Interrupciones del servicio de energía en la Costa, entre las más altas,” 2019. [Online]. Available: https://www.elheraldo.co/economia/interrupciones-delservicio-de-energia-en-la-costa-entre-las-mas-altas666603
- DANE, “Indicadores de Necesidades Básicas Insatisfechas (NBI),” 2022.
- Ministerio de Ambiente Vivienda y Desarrollo Territorial, “Decreto 2372 de 2010,” 2010.
- S. Bedoya Sánchez, “Estrategias Técnico Regulatorias para la Implementación de la Infraestructura AMI en el Horizonte 2030 en Colombia,” Manizales, 2022. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/81711/1053859181.2022.pdf?sequence=3&isAllowed=y
- Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Rendición de Cuentas 2017 - 2018,” 2018.
- Unidad de Planeación Minero-Energética, “Resolución UPME 355 DE 2004,” 2004.
- K. Börner and K. W. Boyack, “Systems thinking,” in Mapping Interdisciplinary Research, vol. 31, no. 07, 2010, pp. 457–460.
- K. E. Maani and R. Y. Cavana, “The Systems Thinker – Systems Methodology - The Systems Thinker,” 2007. [Online]. Available: https://thesystemsthinker.com/systems-methodology/
- D. H. Kim, Introduction to Systems Thinking. 2017.
- J. Lu, Z. Yan, J. Han, and G. Zhang, “Data-Driven Decision-Making (D 3 M): Framework, Methodology, and Directions,” IEEE Trans Emerg Top Comput Intell, vol. 3, no. 4, pp. 286–296, Aug. 2019, doi: https://doi.org/10.1109/TETCI.2019.2915813
- R. Goede, “A framework for the explicit use of specific systems thinking methodologies in data-driven decision support system development,” May 2006. [Online]. Available: https://repository.up.ac.za/bitstream/handle/2263/24606/00front.pdf?isAllowed=y&sequence=1
- Design Thinking en Español, “Design Thinking en Español,” 2018. [Online]. Available: http://www.designthinking.es/inicio/
- J. W. Forrester, “System Dynamics: The Foundation Under Systems Thinking,” Change, vol. 1, no. 3, pp. 1–4, 2010.
- E. F. Wolstenholme, “A Methodology for Qualitative System Dynamics,” Proc. 1985 Int. Syst. Dyn. Conf., vol. 2, no. July, pp. 1049–1058, 1985.
- P. Keys, “System dynamics: a methodological perspective,” Transactions of the Institute of Measurement and Control, vol. 10, no. 4, pp. 218–224, Sep. 1988, doi: https://doi.org/10.1177/014233128801000406
- Comisión de Regulación de Energía y Gas - CREG, CREG 091 de 2007 - Formula tarifaria y costo unitario de prestación del servicio en ZNI, 2007.