Vol. 22 Núm. 4 (2023): Revista UIS Ingenierías
Artículos

Propuesta metodológica: primeros pasos para la implementación de programas de gestión de la demanda en Colombia

Edgar Daniel Álvarez-Tarapuéz
Universidad Nacional de Colombia
Cesar Arango-Lemoine
Universidad Nacional de Colombia
Sandra Ximena Carvajal-Quintero
Universidad Nacional de Colombia
Dahiana López-García
Universidad Nacional de Colombia

Publicado 2023-11-29

Palabras clave

  • generación distribuida,
  • generación variable,
  • análisis técnico-económico,
  • capacidad de alojamiento,
  • simulación técnica

Cómo citar

Álvarez-Tarapuéz , E. D. ., Arango-Lemoine , C. ., Carvajal-Quintero, S. X., & López-García , D. (2023). Propuesta metodológica: primeros pasos para la implementación de programas de gestión de la demanda en Colombia. Revista UIS Ingenierías, 22(4), 129–146. https://doi.org/10.18273/revuin.v22n4-2023012

Resumen

La electrificación de áreas aisladas o rurales conlleva desafíos técnicos, económicos y sociales que diferencian la operación de estas redes en comparación con la operación tradicional de los grandes sistemas eléctricos de energía, como la dependencia del transporte aéreo o fluvial de combustible para el suministro de las plantas generadoras, la falta de medición individual y la infraestructura obsoleta de las redes de distribución. Por lo tanto, este artículo propone una metodología híbrida para el estudio de un caso colombiano analizando el desarrollo de programas para el uso racional de la electricidad y la eficiencia energética en áreas aisladas. Estos primeros pasos están relacionados con el diagnóstico de las condiciones actuales de la red eléctrica, la identificación de los actores que pueden influir en la regulación del servicio eléctrico en el área y la propuesta de mecanismos que permitan promover el uso racional y eficiente de la electricidad.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. S. Chowdhury, S. P. Chowdhury, and P. Crossley, Microgrids and Active Distribution Networks. Institution of Engineering and Technology, 2009, doi: https://doi.org/10.1049/PBRN006E
  2. J. Kwac and R. Rajagopal, “Demand response targeting using big data analytics,” in 2013 IEEE International Conference on Big Data, IEEE, Oct. 2013, pp. 683–690, doi: https://doi.org/10.1109/BigData.2013.6691643
  3. S. N. Bragagnolo, J. C. Vaschetti, F. Magnago, and J. C. Gomez-Targarona, “Gestión de la demanda en las redes inteligentes. Perspectiva y control desde el usuario y la distribuidora,” Información tecnológica, vol. 31, no. 3, pp. 159–170, 2020, doi: https://doi.org/10.4067/S071807642020000300159
  4. P. Palensky and D. Dietrich, “Demand Side Management: Demand Response, Intelligent Energy Systems, and Smart Loads,” IEEE Trans Industr Inform, vol. 7, no. 3, pp. 381–388, 2011, doi: https://doi.org/10.1109/TII.2011.2158841
  5. A. J. Albarakati et al., “Microgrid energy management and monitoring systems: A comprehensive review,” Front Energy Res, vol. 10, 2022, doi: https://doi.org/10.3389/fenrg.2022.1097858
  6. M. Behrangrad, “A review of demand side management business models in the electricity market,” Renewable and Sustainable Energy Reviews, vol. 47, pp. 270–283, Jul. 2015, doi: https://doi.org/10.1016/j.rser.2015.03.033
  7. G. Ferruzzi, G. Graditi, F. Rossi, and A. Russo, “Optimal Operation of a Residential Microgrid: The Role of Demand Side Management,” Intelligent Industrial Systems, vol. 1, no. 1, pp. 61–82, 2015, doi: https://doi.org/10.1007/s40903-015-0012-y
  8. M. R. Narimani, P. J. Nauert, J.-Y. Joo, and M. L. Crow, “Reliability assesment of power system at the presence of demand side management,” in 2016 IEEE Power and Energy Conference at Illinois (PECI), 2016, pp. 1–5, doi: https://doi.org/10.1109/PECI.2016.7459222
  9. E. Oh, “Fair Virtual Energy Storage System Operation for Smart Energy Communities,” Sustainability, vol. 14, no. 15, p. 9413, Aug. 2022, doi: https://doi.org/10.3390/su14159413
  10. Fedit, “Smart Grids Y La Evolución De La Red Eléctrica,” Revista Educación en Ingeniería, vol. 8, no. 15, 2011.
  11. D. Neves, M. C. Brito, and C. A. Silva, “Impact of solar and wind forecast uncertainties on demand response of isolated microgrids,” Renew Energy, vol. 87, pp. 1003–1015, Mar. 2016, doi: https://doi.org/10.1016/j.renene.2015.08.075
  12. C. Eid, P. Codani, Y. Perez, J. Reneses, and R. Hakvoort, “Managing electric flexibility from Distributed Energy Resources: A review of incentives for market design,” Renewable and Sustainable Energy Reviews, vol. 64, pp. 237–247, 2016, doi: https://doi.org/10.1016/j.rser.2016.06.008
  13. Federal Energy Regulatory Commission, “Benefits of demand response in electricity markets and recommendations for achieving them,” pp. 1–122, 2006, [Online]. Available: https://www.energy.gov/oe/articles/benefits-demandresponse-electricity-markets-and-recommendationsachieving-them-report
  14. F. Shariatzadeh, P. Mandal, and A. K. Srivastava, “Demand response for sustainable energy systems: A review, application and implementation strategy,” Renewable and Sustainable Energy Reviews, vol. 45, pp. 343–350, May 2015, doi: https://doi.org/10.1016/j.rser.2015.01.062
  15. E. Oh, “Community Solar Operation Strategy for Smart Energy Communities Considering Resource Fairness,” Applied Sciences, vol. 12, no. 24, p. 12867, 2022, doi: https://doi.org/10.3390/app122412867
  16. R. Rashed Mohassel, A. Fung, F. Mohammadi, and K. Raahemifar, “A survey on Advanced Metering Infrastructure,” International Journal of Electrical Power & Energy Systems, vol. 63, pp. 473–484, 2014, doi: https://doi.org/10.1016/j.ijepes.2014.06.025
  17. Q. Cai, Q. Xu, J. Qing, G. Shi, and Q.-M. Liang, “Promoting wind and photovoltaics renewable energy integration through demand response: Dynamic pricing mechanism design and economic analysis for smart residential communities,” Energy, vol. 261, p. 125293, 2022, doi: https://doi.org/10.1016/j.energy.2022.125293
  18. A. Brooks, E. Lu, D. Reicher, C. Spirakis, and B. Weihl, “Demand Dispatch,” IEEE Power and Energy Magazine, vol. 8, no. 3, pp. 20–29, 2010, doi: https://doi.org/10.1109/MPE.2010.936349
  19. V. Tomat, A. P. Ramallo-González, A. SkarmetaGómez, G. Georgopoulos, and P. Papadopoulos, “Insights into End Users’ Acceptance and Participation in Energy Flexibility Strategies,” Buildings, vol. 13, no. 2, p. 461, Feb. 2023, doi: https://doi.org/10.3390/buildings13020461
  20. M. K. Kiptoo, O. B. Adewuyi, H. O. R. Howlader, A. Nakadomari, and T. Senjyu, “Optimal Capacity and Operational Planning for Renewable Energy-Based Microgrid Considering Different Demand-Side Management Strategies,” Energies (Basel), vol. 16, no. 10, p. 4147, May 2023, doi: https://doi.org/10.3390/en16104147
  21. D. López García, “Caracterización de un esquema remunerativo para la participación de la demanda en la prestación del servicio complementario de control de frecuencia en el mercado eléctrico colombiano,” Universidad Nacional de Colombia, 2019.
  22. D. López García, J. D. Beltrán Gallego, and S. X. Carvajal Quintero, “Proposing Dynamic Pricing as an Alternative to Improve Technical and Economic Conditions in Rural Electrification: A Case Study from Colombia,” Sustainability, vol. 15, no. 10, p. 7985, 2023, doi: https://doi.org/10.3390/su15107985
  23. A. Molina-Garcia, F. Bouffard, and D. S. Kirschen, “Decentralized Demand-Side Contribution to Primary Frequency Control,” IEEE Transactions on Power Systems, vol. 26, no. 1, pp. 411–419, 2011, doi: https://doi.org/10.1109/TPWRS.2010.2048223
  24. A. Rodriguez Zabala, D. López-García, S. X. Carvajal-Quintero, and A. Arango Manrique, “A Comprehensive Review of Sustainability in Isolated Colombian Microgrids,” Tecnura, vol. 25, no. 70, pp. 126–145, Oct. 2021, doi: https://doi.org/10.14483/22487638.18619
  25. C. Kolokathis, “Designing retail electricity tariffs for a successful Energy Union,” Dublin, Sep. 2018. [Online]. Available: https://www.raponline.org/wpcontent/uploads/2018/10/RAP_CK-Network-TariffDesign-for-a-Smart-Future_Citizens-EnergyForum_20_09_2018_2.pdf
  26. J. C. Oviedo-Cepeda, I. Serna-Suárez, G. OsmaPinto, C. Duarte, J. Solano, and H. A. Gabbar, “Design of tariff schemes as demand response mechanisms for stand-alone microgrids planning,” Energy, vol. 211, p. 119028, 2020, doi: https://doi.org/10.1016/j.energy.2020.119028
  27. J. F. García Franco, “Diseño de Programas de Uso Racional y Eficiente de la Energía Eléctrica en Zonas No Interconectadas en Colombia,”, Universidad Nacional de Colombia [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/78 113/1053834460.2020.pdf
  28. J. N. Adams, Z. D. Bélafi, M. Horváth, J. B. Kocsis, and T. Csoknyai, “How Smart Meter Data Analysis Can Support Understanding the Impact of Occupant Behavior on Building Energy Performance: A Comprehensive Review,” Energies (Basel), vol. 14, no. 9, p. 2502, 2021, doi: https://doi.org/10.3390/en14092502
  29. A. Faruqui, R. Hledik, and J. Palmer, “TimeVarying and Dynamic Rate Design,” 2012. [Online]. Available: https://hepg.hks.harvard.edu/sites/hwpi.harvard.edu/file/hepg/files/rap_faruquihledikpalmer_timevaryingdynamicratedesign_2012_jul_23.pdf?m=1523367839
  30. International Energy Agency - IEA, “World Energy Outlook,” 2018. Paris. [Online]. Available: https://www.iea.org/reports/world-energy-outlook-2018
  31. U. Zafar, S. Bayhan, and A. Sanfilippo, “Home Energy Management System Concepts, Configurations, and Technologies for the Smart Grid,” IEEE Access, vol. 8, pp. 119271 – 119286, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3005244
  32. R. Hidalgo-Leon et al., “Feasibility Study for OffGrid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador,” Energies (Basel), vol. 15, no. 5, p. 1776, Feb. 2022, doi: https://doi.org/10.3390/en15051776
  33. A. de Almeida, N. Quaresma, and E. Biosse, “The role of energy efficiency and renewable energies to accelerate sustainable energy access — a perspective case study of Mozambique,” Energy Effic, vol. 15, no. 6, p. 36, Aug. 2022, doi: https://doi.org/10.1007/s12053-022-10045-w
  34. J. F. Bustos González, A. L. Sepúlveda, and K. T. Aponte, “Zonas no interconectadas eléctricamente en Colombia: problemas y perspectiva,” Econografos Esc. Econ., 2014. [Online]. Available: https://fce.unal.edu.co/docspublicaciones/images/documentos-econografoseconomia-65.pdf
  35. D. López-García, A. Arango-Manrique, and S. X. Carvajal-Quintero, “Integration of distributed energy resources in isolated microgrids: the Colombian paradigm,” TecnoLógicas, vol. 21, no. 42, pp. 13–30, 2018, doi: https://doi.org/10.22430/22565337.774
  36. I. Granit, “What makes Colombia’s indigenous peoples adopt microgrids? Social acceptance and financial constraints in renewable energy diffusion,” Energy Res Soc Sci, vol. 101, p. 103132, 2023, doi: https://doi.org/10.1016/j.erss.2023.103132
  37. IPSE, “Soluciones Energéticas para las Zonas No Interconectadas de Colombia,” 2014. [Online]. Available: https://www.minminas.gov.co/documents/10180/742159/09C-SolucionesEnergeticasZNI-IPSE.pdf/2871b35deaf7-4787-b778-ee73b18dbc0e
  38. Superintendencia de Servicios Públicos Domiciliarios, “Zonas No Interconectadas – Informe Sectorial de la prestación del servicio de energía eléctrica 2021,” 2021. [Online]. Available: https://www.superservicios.gov.co/sites/default/files/inline-files/informe_sectorial_zni_2021%20%281%29.pdf
  39. L. C. M. Blasques and J. T. Pinho, “Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration,” Energy Policy, vol. 45, pp. 721–729, 2012, doi: https://doi.org/10.1016/J.ENPOL.2012.03.028
  40. IPSE, “Caracterización de las ZNI,” 2022.
  41. IPSE, “Boletín mensual de localidades con telemetría - junio 2022,” 2022. [Online]. Available: https://ipse.gov.co/wpcontent/uploads/2022/07/Boletin%20Datos%20IPSE%20-%20Junio%202022.pdf
  42. Unidad de planeación Minero Enérgetica - UPME, “Plan Energético Nacional 2020 - 2050,” Bogotá D.C., 2019. [Online]. Available: https://www1.upme.gov.co/DemandaEnergetica/PEN_documento_para_consulta.pdf
  43. R. Hidalgo-Leon et al., “Feasibility Study for OffGrid Hybrid Power Systems Considering an Energy Efficiency Initiative for an Island in Ecuador,” Energies (Basel), vol. 15, no. 5, p. 1776, 2022, doi: https://doi.org/10.3390/en15051776
  44. Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Instituto De Planificación Y Promoción De Soluciones Energéticas Para Las Zni. Informe Rendición Social De Cuentas,” no. 9, pp. 1–99, 2017. [Online]. Available: https://ipse.gov.co/documento_planeacion/documento/rendicion_de_cuentas/2017/Informe%20de%20Gesti%C3%B3n%202017%20-%20FinalWeb.pdf
  45. N. Esteve Gómez, “Energización de las zonas no interconectadas a partir de las energías renovables solar y eólica,” Bogotá D.C., 2011. [Online]. Available: https://repository.javeriana.edu.co/bitstream/handle/10554/6078/tesis121.pdf
  46. Superintendencia de Servicios Públicos Domiciliarios, “Zonas No Interconectadas ZNI Diagnóstico de la prestación del servicio de energía eléctrica 2018,” 2018. [Online]. Available: https://www.superservicios.gov.co/sites/default/files/inline-files/diag_zni_2018_7122018.pdf
  47. A. A. Eras-Almeida, T. Vásquez-Hernández, M. J. Hurtado-Moncada, and M. A. Egido-Aguilera, “A Comprehensive Evaluation of Off-Grid Photovoltaic Experiences in Non-Interconnected Zones of Colombia: Integrating a Sustainable Perspective,” Energies (Basel), vol. 16, no. 5, p. 2292, 2023, doi: https://doi.org/10.3390/en16052292
  48. BC NOTICIAS, “Director de Energía del Ministerio de Minas y GENSA cumplieron cita con comunidad del Vaupés.” 2018. [Online]. Available: https://www.bcnoticias.com.co/director-de-energia-delministerio-de-minas-y-gensa-cumplieron-cita-concomunidad-del-vaupes/
  49. Superintendencia de Servicios Públicos Domiciliarios, “Diagnóstico de la Calidad del Servicio de Energía Eléctrica en Colombia 2018,” 2019. [Online]. Available: https://www.superservicios.gov.co/sites/default/files/inlinefiles/diagnostico_calidad_servicio_2018%20%281%29.pdf
  50. El Heraldo, “Interrupciones del servicio de energía en la Costa, entre las más altas,” 2019. [Online]. Available: https://www.elheraldo.co/economia/interrupciones-delservicio-de-energia-en-la-costa-entre-las-mas-altas666603
  51. DANE, “Indicadores de Necesidades Básicas Insatisfechas (NBI),” 2022.
  52. Ministerio de Ambiente Vivienda y Desarrollo Territorial, “Decreto 2372 de 2010,” 2010.
  53. S. Bedoya Sánchez, “Estrategias Técnico Regulatorias para la Implementación de la Infraestructura AMI en el Horizonte 2030 en Colombia,” Manizales, 2022. [Online]. Available: https://repositorio.unal.edu.co/bitstream/handle/unal/81711/1053859181.2022.pdf?sequence=3&isAllowed=y
  54. Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas - IPSE, “Rendición de Cuentas 2017 - 2018,” 2018.
  55. Unidad de Planeación Minero-Energética, “Resolución UPME 355 DE 2004,” 2004.
  56. K. Börner and K. W. Boyack, “Systems thinking,” in Mapping Interdisciplinary Research, vol. 31, no. 07, 2010, pp. 457–460.
  57. K. E. Maani and R. Y. Cavana, “The Systems Thinker – Systems Methodology - The Systems Thinker,” 2007. [Online]. Available: https://thesystemsthinker.com/systems-methodology/
  58. D. H. Kim, Introduction to Systems Thinking. 2017.
  59. J. Lu, Z. Yan, J. Han, and G. Zhang, “Data-Driven Decision-Making (D 3 M): Framework, Methodology, and Directions,” IEEE Trans Emerg Top Comput Intell, vol. 3, no. 4, pp. 286–296, Aug. 2019, doi: https://doi.org/10.1109/TETCI.2019.2915813
  60. R. Goede, “A framework for the explicit use of specific systems thinking methodologies in data-driven decision support system development,” May 2006. [Online]. Available: https://repository.up.ac.za/bitstream/handle/2263/24606/00front.pdf?isAllowed=y&sequence=1
  61. Design Thinking en Español, “Design Thinking en Español,” 2018. [Online]. Available: http://www.designthinking.es/inicio/
  62. J. W. Forrester, “System Dynamics: The Foundation Under Systems Thinking,” Change, vol. 1, no. 3, pp. 1–4, 2010.
  63. E. F. Wolstenholme, “A Methodology for Qualitative System Dynamics,” Proc. 1985 Int. Syst. Dyn. Conf., vol. 2, no. July, pp. 1049–1058, 1985.
  64. P. Keys, “System dynamics: a methodological perspective,” Transactions of the Institute of Measurement and Control, vol. 10, no. 4, pp. 218–224, Sep. 1988, doi: https://doi.org/10.1177/014233128801000406
  65. Comisión de Regulación de Energía y Gas - CREG, CREG 091 de 2007 - Formula tarifaria y costo unitario de prestación del servicio en ZNI, 2007.