Vol. 23 Núm. 4 (2024): Revista UIS Ingenierías
Artículos

Evaluación de los parámetros operativos de una celda de electrocoagulación a escala laboratorio en la eliminación del colorante azo Rojo 40 en solución acuosa usando electrodos de aluminio

Candelaria Nahir Tejada-Tovar
Universidad de Cartagena
Ángel Villabona-Ortiz
Universidad de Cartagena
Diego Navarro-Romero
Universidad de Cartagena

Publicado 2024-11-25

Palabras clave

  • Aluminio,
  • Colorante azoico,
  • Concentración,
  • Concentración de electrolito,
  • Consumo energético,
  • Eficiencia,
  • Electrodo,
  • Parámetros operativos,
  • Tratamiento de aguas,
  • Tratamiento electroquímico,
  • Voltaje
  • ...Más
    Menos

Cómo citar

Tejada-Tovar, C. N., Villabona-Ortiz , Ángel, & Navarro-Romero, D. (2024). Evaluación de los parámetros operativos de una celda de electrocoagulación a escala laboratorio en la eliminación del colorante azo Rojo 40 en solución acuosa usando electrodos de aluminio. Revista UIS Ingenierías, 23(4), 85–98. https://doi.org/10.18273/revuin.v23n4-2024007

Resumen

El objetivo del presente estudio fue analizar la eficiencia de la eliminación del colorante rojo 40 mediante el proceso de electrocoagulación utilizando electrodos de aluminio. La metodología utilizada, incluye una primera etapa teniendo en cuanta los parámetros operativos de la concentración de electrolito (0–0,5 g/L de NaCl) el pH de la solución (4,5–9,1), numero de electrodos (2–4), distancia entre electrodo (1–2 cm) con los mejores resultados de esta etapa se realizó un diseño experimental factorial multinivel con dos variables: los voltajes (10, 15 y 20) V y la duración de la electrocoagulación de (3, 6, 10, 20, 40 y 60) min. Los resultados muestran el papel principal de varios parámetros para maximizar la eficiencia de eliminación y minimizar el consumo de energía. Según los resultados experimentales, la máxima eficiencia de remoción obtenida es de 85.29 % con un consumo de energía de 14,08 kJ.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. Z. Al-Qodah and M. Al-Shannag, “Heavy metal ions removal from wastewater using electrocoagulation processes: A comprehensive review,” Sep. Sci. Technol., vol. 52, no. 17, pp. 2649–2676, 2017, doi: https://doi.org/10.1080/01496395.2017.1373677
  2. A. Akhtar, Z. Aslam, A. Asghar, M. M. Bello, and A. A. A. Raman, “Electrocoagulation of Congo Red dye-containing wastewater: Optimization of operational parameters and process mechanism,” J. Environ. Chem. Eng., vol. 8, no. 5, p. 104055, 2020, doi: https://doi.org/10.1016/j.jece.2020.104055
  3. A. Villabona-Ortíz, C. Tejada-Tovar, and L. De-La-Rosa-Jiménez, “Evaluation of Parameters in the Removal of Linear Alkylbenzene Sulfonate Anionic Surfactant Using Electrocoagulation,” Rev. Fac. Ing., vol. 30, no. 55, p. e11570, 2021, doi: https://doi.org/10.19053/01211129.V30.N55.2021.11570
  4. A. G. Khorram and N. Fallah, “Treatment of textile dyeing factory wastewater by electrocoagulation with low sludge settling time: Optimization of operating parameters by RSM,” J. Environ. Chem. Eng., vol. 6, no. 1, pp. 635–642, 2018, doi: https://doi.org/10.1016/J.JECE.2017.12.054
  5. G. Kurtoğlu Akkaya, G. Polat, “Treatment by Electrocoagulation of Congo red from Aqueous Solution Using Cantor Alloy,” Eur. J. Sci. Technol., vol. 32, pp. 791–796, 2021, doi: https://doi.org/10.31590/EJOSAT.1041536
  6. J. Esther Baby, I. Jaambavi, G. Rajeswari, T. Akshaya, “Optimization removal of colour and organic solid pollutants from textile industry wastewater by electrocoagulation,” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/J.MATPR.2021.03.339
  7. M. S. Ramya Sankar, V. Sivasubramanian, “Application of statistical design to optimize the electrocoagulation of synthetic Congo red dye solution and predicting the mechanism,” Int. J. Environ. Sci. Technol., vol. 17, no. 3, pp. 1373–1386, 2019, doi: https://doi.org/10.1007/S13762-019-02555-5/METRICS
  8. J. Lu, P. Zhang, J. Li, “Electrocoagulation technology for water purification: An update review on reactor design and some newly concerned pollutants removal,” J. Environ. Manage., vol. 296, p. 113259, 2021, doi: https://doi.org/10.1016/J.JENVMAN.2021.113259
  9. N. Krishnamoorthy et al., “Recent advances and future prospects of electrochemical processes for microalgae harvesting,” J. Environ. Chem. Eng., vol. 9, no. 5, p. 105875, 2021, doi: https://doi.org/10.1016/J.JECE.2021.105875
  10. A. Tahreen, M. S. Jami, F. Ali, “Role of electrocoagulation in wastewater treatment: A developmental review,” J. Water Process Eng., vol. 37, p. 101440, 2020, doi: https://doi.org/10.1016/J.JWPE.2020.101440
  11. T. Kim, T. K. Kim, K. D. Zoh, “Removal mechanism of heavy metal (Cu, Ni, Zn, and Cr) in the presence of cyanide during electrocoagulation using Fe and Al electrodes,” J. Water Process Eng., vol. 33, p. 101109, 2020, doi: https://doi.org/10.1016/J.JWPE.2019.101109
  12. A. A. Al-Raad, M. M. Hanafiah, “Removal of inorganic pollutants using electrocoagulation technology: A review of emerging applications and mechanisms,” J. Environ. Manage., vol. 300, no. August, p. 113696, 2021, doi: https://doi.org/10.1016/j.jenvman.2021.113696
  13. B. Laney, O. M. Rodriguez-Narvaez, B. Apambire, and E. R. Bandala, “Water Defluoridation Using Sequentially Coupled Moringa oleifera Seed Extract and Electrocoagulation,” Groundw. Monit. Remediat., vol. 40, no. 3, pp. 67–74, May 2020, doi: https://doi.org/10.1111/GWMR.12396
  14. I. D. Tegladza, Q. Xu, K. Xu, G. Lv, and J. Lu, “Electrocoagulation processes: A general review about role of electro-generated flocs in pollutant removal,” Process Saf. Environ. Prot., vol. 146, pp. 169–189, 2021, doi: https://doi.org/10.1016/J.PSEP.2020.08.048
  15. E. Afiatun, H. Pradiko, and E. Fabian, “Turbidity reduction for the development of pilot scale electrocoagulation devices,” Int. J. GEOMATE, vol. 16, no. 56, pp. 123–128, 2019, doi: https://doi.org/10.21660/2019.56.4682
  16. F. I. B. Ogando, C. L. de Aguiar, J. V. N. Viotto, F. J. Heredia, and D. Hernanz, “Removal of phenolic, turbidity and color in sugarcane juice by electrocoagulation as a sulfur-free process,” Food Res. Int., vol. 122, pp. 643–652, 2019, doi: https://doi.org/10.1016/J.FOODRES.2019.01.039
  17. A. K. Prajapati, “Sono-assisted electrocoagulation treatment of rice grain based distillery biodigester effluent: Performance and cost analysis,” Process Saf. Environ. Prot., vol. 150, pp. 314–322, 2021, doi: https://doi.org/10.1016/J.PSEP.2021.04.030
  18. H. P. De Carvalho, J. Huang, J. Ni, M. Zhao, X. Yang, X. Wang, “Removal of Acid Black 1 and Basic Red 2 from aqueous solutions by electrocoagulation/Moringa oleifera seed adsorption coupling in a batch system,” Water Sci. Technol., vol. 72, no. 2, pp. 203–213, 2015, doi: https://doi.org/10.2166/WST.2015.196
  19. S. Palanisamy et al., “Application of electrochemical treatment for the removal of triazine dye using aluminium electrodes,” J. Water Supply Res. Technol., vol. 69, no. 4, pp. 345–354, 2020, doi: https://doi.org/10.2166/AQUA.2020.109
  20. N. Daneshvar, A. R. Khataee, and N. Djafarzadeh, “The use of artificial neural networks (ANN) for modeling of decolorization of textile dye solution containing C. I. Basic Yellow 28 by electrocoagulation process,” J. Hazard. Mater., vol. 137, no. 3, pp. 1788–1795, 2006, doi: https://doi.org/10.1016/J.JHAZMAT.2006.05.042
  21. S. Boinpally, A. Kolla, J. Kainthola, R. Kodali, and J. Vemuri, “A state-of-the-art review of the electrocoagulation technology for wastewater treatment,” Water Cycle, vol. 4, pp. 26–36, 2023, doi: https://doi.org/10.1016/J.WATCYC.2023.01.001
  22. FAO, El apoyo de la FAO para alcanzar los Objetivos del Desarrollo Sostenible en América del Sur-Panorama. Santiago de Chile, 2019. [Online]. Available: http://www.fao.org/3/ca3884es/ca3884es.pdf
  23. M. Ziati, F. Khemmari, A. Aitbara, and S. Hazourli, “Reduction of Turbidity and Chromium Content of Tannery Wastewater by Electrocoagulation Process,” Water Environ. Res., vol. 90, no. 7, pp. 598–603, 2018, doi: https://doi.org/10.2175/106143017X15131012152906
  24. M. P. M. Combatt, W. C. S. Amorim, E. M. d. S. Brito, A. F. Cupertino, R. C. S. Mendonça, and H. A. Pereira, “Design of parallel plate electrocoagulation reactors supplied by photovoltaic system applied to water treatment,” Comput. Electron. Agric., vol. 177, p. 105676, 2020, doi: https://doi.org/10.1016/J.COMPAG.2020.105676
  25. D. Das and B. K. Nandi, “Removal of Fe (II) ions from drinking water using Electrocoagulation (EC) process: Parametric optimization and kinetic study,” J. Environ. Chem. Eng., vol. 7, no. 3, p. 103116, 2019, doi: https://doi.org/10.1016/J.JECE.2019.103116
  26. M. Roy, C. M. van Genuchten, L. Rietveld, and D. van Halem, “Integrating biological As(III) oxidation with Fe(0) electrocoagulation for arsenic removal from groundwater,” Water Res., vol. 188, p. 116531, 2021, doi: https://doi.org/10.1016/J.WATRES.2020.116531
  27. A. Suresh, S. Sathish, and G. Narendrakumar, “Electrocoagulation of azo dye containing synthetic wastewater using monopolar iron electrodes and the characterization of the sludge,” Water Pract. Technol., vol. 14, no. 3, pp. 587–597, 2019, doi: https://doi.org/10.2166/WPT.2019.044
  28. Y. Liu, X. Zhang, W. M. Jiang, M. R. Wu, and Z. H. Li, “Comprehensive review of floc growth and structure using electrocoagulation: Characterization, measurement, and influencing factors,” Chem. Eng. J., vol. 417, p. 129310, 2021, doi: https://doi.org/10.1016/J.CEJ.2021.129310
  29. J. Yang et al., “Cd removal by direct and positive single pulse current electrocoagulation: Operating conditions and energy consumption,” Environ. Technol. Innov., vol. 20, p. 101123, 2020, doi: https://doi.org/10.1016/J.ETI.2020.101123
  30. M. B. Bahrodin, N. S. Zaidi, N. Hussein, M. Sillanpää, D. D. Prasetyo, A. Syafiuddin, “Recent Advances on Coagulation-Based Treatment of Wastewater: Transition from Chemical to Natural Coagulant,” Curr. Pollut. Reports, vol. 7, no. 3, pp. 379–391, May 2021, doi: https://doi.org/10.1007/S40726-021-00191-7/METRICS
  31. G. J. Canaza Chicasaca and Y. Mamani Condori, “Revisión del uso de coagulantes naturales para remoción de turbidez del agua,” Universidad Peruana Unión, 2020. Accessed: Feb. 17, 2024. [Online]. Available: https://repositorio.upeu.edu.pe/handle/20.500.12840/3334
  32. J. A. Lozano-Álvarez, V. F. Marañón-Ruiz, J. Jáuregui-Rincón, I. Medina-Ramírez, R. Salinas-Gutiérrez, and C. Frausto-Reyes, “Remoción de colorantes azo con alginato: Relación entre estructura de colorante y eficiencia de remoción,” Rev. Int. Contam. Ambient., vol. 35, no. 1, pp. 223–236, 2019, doi: https://doi.org/10.20937/RICA.2019.35.01.16
  33. C. Liu, K. Shih, Y. Gao, F. Li, and L. Wei, “Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on the surface of alumina,” J. Soils Sediments, vol. 12, no. 5, pp. 724–733, 2012, doi: https://doi.org/10.1007/s11368-012-0506-0