Vol. 23 Núm. 4 (2024): Revista UIS Ingenierías
Artículos

Predicción de zonas susceptible a los procesos de remoción masa aplicando el modelo matemático red neuronal artificial en la localidad de Guatapurí y Chemesquemena, Colombia

Javier Estrada-Romero
Fundación Universitaria del Área Andina
Fabio Carrillo
Fundación Universitaria del Área Andina
Dino Carmelo Manco-Jaraba
Universidad de La Guajira
Janer Cantillo
Esri Colombia

Publicado 2024-11-24

Palabras clave

  • Chemesquemena,
  • Guatapurí,
  • Predicción,
  • Procesos de remoción en masa,
  • Redes neuronales artificiales,
  • Susceptibilidad
  • ...Más
    Menos

Cómo citar

Estrada-Romero , J. ., Carrillo , F. ., Manco-Jaraba , D. C., & Cantillo, J. . . . . . . . . . . . . (2024). Predicción de zonas susceptible a los procesos de remoción masa aplicando el modelo matemático red neuronal artificial en la localidad de Guatapurí y Chemesquemena, Colombia. Revista UIS Ingenierías, 23(4), 69–84. https://doi.org/10.18273/revuin.v23n4-2024006

Resumen

Esta investigación tiene como objetivo predecir zonas susceptibles a procesos de remoción en masa aplicando modelo matemático red neuronal artificial en la localidad de Guatapurí y Chemesquemena. Se delimitaron zonas susceptibles a fenómenos de remoción en masa a partir de la identificación de factores condicionantes ((1) Unidades Geológicas Superficiales, (2) Pendiente del terreno, (3) Cobertura vegetal, (4) Índice de Rugosidad de Terreno, (5) Geomorfología y (6) Acuenca)) y realización de mapas y procesamiento de imágenes satelitales (Landsat) aplicando modelos matemáticos de tipo redes neuronales artificiales. La evaluación de susceptibilidad destacó una distribución desigual en Guatapurí y Chemesquemena. Las zonas de "muy alta" susceptibilidad (43% del área) se caracterizaron por presentar pendientes pronunciadas, patrones distintos de flujo y relieves moderados a muy elevados. En contraste, las zonas catalogadas como de "muy baja" susceptibilidad (34% del área), presentan pendientes suaves a casi planas, con escorrentía lenta y materiales menos propensos a deslizamientos.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. V. Ortiz-Maestre, C. Polo-Mendoza, D. Girales-Puerta, D. Manco-Jaraba, “Análisis de susceptibilidad por movimientos en masa implementando el método Mora-Vahrson modificado para el corregimiento de Chemesquemena (Cesar, Colombia),” Tecnura, vol. 27, no. 77, pp. 1–21, 2022, doi: https://doi.org/10.14483/22487638.19951
  2. E. Rodríguez et al., “Guía metodológica para la zonificación de amenaza por movimientos en masa escala 1: 25.000,” Servicio Geológico Colombiano, 2017. doi: https://doi.org/10.32685/9789585978225
  3. F. C. Dai, C. F. Lee, and Y. Y. Ngai, “Landslide risk assessment and management: An overview,” Eng. Geol., vol. 64, no. 1, pp. 65–87, 2002, doi: https://doi.org/10.1016/S0013-7952(01)00093-X
  4. S. Park, C. Choi, B. Kim, J. Kim, “Landslide susceptibility mapping using frequency ratio, analytic hierarchy process, logistic regression, and artificial neural network methods at the Inje area, Korea,” Environ. Earth Sci., vol. 68, no. 5, pp. 1443–1464, 2013, doi: https://doi.org/10.1007/s12665-012-1842-5
  5. H. Zhang, G. Zhang, Q. Jia, “Integration of Analytical Hierarchy Process and Landslide Susceptibility Index Based Landslide Susceptibility Assessment of the Pearl River Delta Area, China,” IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., vol. 12, no. 11, pp. 4239–4251, 2019, doi: https://doi.org/10.1109/JSTARS.2019.2938554
  6. B. Kalantar, N. Ueda, U. S. Lay, H. A. H. Al-Najjar, and A. A. Halin, “Conditioning Factors Determination for Landslide Susceptibility Mapping Using Support Vector Machine Learning,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2019, pp. 9626–9629, doi: https://doi.org/10.1109/IGARSS.2019.8898340
  7. Y. Yi, Z. Zhang, W. Zhang, and C. Xu, “Comparison of Different Machine Learning Models for Landslide Susceptibility Mapping,” in International Geoscience and Remote Sensing Symposium (IGARSS), 2019, pp. 9318–9321. doi: https://doi.org/10.1109/IGARSS.2019.8898208
  8. H. Hong et al., “Landslide susceptibility mapping using J48 Decision Tree with AdaBoost, Bagging and Rotation Forest ensembles in the Guangchang area (China),” Catena, vol. 163, pp. 399–413, 2018, doi: https://doi.org/10.1016/j.catena.2018.01.005
  9. B. Pradhan, S. Lee, “Delineation of landslide hazard areas on Penang Island, Malaysia, by using frequency ratio, logistic regression, and artificial neural network models,” Environ. Earth Sci., vol. 60, no. 5, pp. 1037–1054, 2010, doi: https://doi.org/10.1007/s12665-009-0245-8
  10. A. Lambert, Manual de Muestreo para Exploración, Minería Subterránea Y Rajo Abierto. 2006.
  11. Servicio Geológico Colombiano, “Sistema de Información de Movimientos en Masa.” [Online]. Available: https://simma.sgc.gov.co/#/public/results/
  12. D. Varnes, “Slope Movement Types and Processes,” 1978.
  13. J. H. Carvajal, Propuesta de estandarización de la cartografía geomorfológica en Colombia. Imprenta Nacional de Colombia 2012.
  14. Ideam, Igac, Cormagdalena, “Metodología CORINE Land Cover Adaptada para Colombia escala 1:100.000,” 2016.
  15. Ministerio de Vivienda, “Decreto Numero 1077 de 2015 ‘Por medio del cual se expide el Decreto Único Reglamentario del Sector Vivienda, Ciudad y Territorio,’” Decreto, vol. 2015, pp. 1–829, 2015.
  16. Pamela, I. A. Sadisun, Y. Arifianti, “Weights of Evidence Method for Landslide Susceptibility Mapping in Takengon, Central Aceh, Indonesia,” in IOP Conference Series: Earth and Environmental Science, 2018, doi: https://doi.org/10.1088/1755-1315/118/1/012037
  17. C. V. Patriche, R. Pirnau, A. Grozavu, and B. Rosca, “A Comparative Analysis of Binary Logistic Regression and Analytical Hierarchy Process for Landslide Susceptibility Assessment in the Dobrovăț River Basin, Romania,” Pedosphere, vol. 26, no. 3, 2016, doi: https://doi.org/10.1016/S1002-0160(15)60047-9
  18. S. Lee, J. H. Ryu, M. J. Lee, and J. S. Won, “Use of an artificial neural network for analysis of the susceptibility to landslides at Boun, Korea,” Environ. Geol., vol. 44, no. 7, pp. 820–833, 2003, doi: https://doi.org/10.1007/s00254-003-0825-y
  19. E. Rouault, “GDAL”. Zenodo, nov. 06, 2024, doi: https://doi.org/10.5281/zenodo.14046734
  20. W. McKinney, “Pandas documentation.” 2023.
  21. K. H. Zou, A. J. O’Malley, L. Mauri, “Receiver-Operating Characteristic Analysis for Evaluating Diagnostic Tests and Predictive Models,” Circulation, vol. 115, pp. 654–657, 2007.
  22. J. G. Kim, S. H. Shin, H. Kang, “A Case Study on the Use of ROC Curve and AUC in the Evaluation of Discriminant Model,” J. Korean data Anal. Soc., vol. 20, pp. 609–619, 2018.
  23. F. Pedregosa, “SciKit-Learn: Machine Learning in Python.” Journal of Machine Learning Research, vol. 12, 2012.
  24. A. Burkov, The hundred-page machine learning book-annotated. 2019.
  25. E. Yesilnacar, T. Topal, “Landslide susceptibility mapping: A comparison of logistic regression and neural networks methods in a medium scale study, Hendek region (Turkey),” Eng. Geol., vol. 79, no. 3–4, 2005, doi: https://doi.org/10.1016/j.enggeo.2005.02.002
  26. P. Goyes-Peñafiel, A. Hernandez-Rojas, “Landslide susceptibility index based on the integration of logistic regression and weights of evidence: A case study in Popayan, Colombia,” Eng. Geol., vol. 280, 2021, doi: https://doi.org/10.1016/j.enggeo.2020.105958
  27. A. Mantilla, P. Goyes-Peñafiel, “Predicción de la ocurrencia de depósitos minerales tipo pórfido usando técnicas de aprendizaje automático,” proyecto de grado, Universidad Industrial de Santander, 2023.
  28. D. Mindrila and P. Balentyne, “Scatterplots and Correlation,” 2017. [Online]. Available: https://www.studocu.com/es-mx/document/universidad-univer/economy/scatterplots-and-correlation-notes/14672739
  29. J. Remondo, A. González-Díez, J. R. Díaz de Terán, A. Cendrero, “Landslide susceptibility models utilising spatial data analysis techniques. A case study from the lower Deba Valley, Guipúzcoa (Spain),” Nat. Hazards, vol. 30, pp. 267-279, 2003, doi: https://doi.org/10.1016/10.1023/B:NHAZ.0000007202.12543.3a
  30. S. Beguería, “Validation and evaluation of predictive models in hazard assessment and risk management,” Nat. Hazards, vol. 37, pp. 315–329, 2006, doi: https://doi.org/10.1007/s11069-005-5182-6
  31. D. W. Hosmer, S. Lemeshow, Applied Logistic Regression. John Wiley & Sons, 2002, doi: https://doi.org/10.1002/0471722146
  32. P. Frattini, G. Crosta, A. Carrara, “Techniques for evaluating the performance of landslide susceptibility models,” Eng. Geol., vol. 111, pp. 62–72, 2010, doi: https://doi.org/10.1016/j.enggeo.2009.12.004
  33. A. Nandi and A. Shakoor, “Preparation of a landslide susceptibility map of Summit County, Ohio , USA , using numerical models,” IAEG2006, no. 660, pp. 1–11, 2006.
  34. L. Montrasio, R. Valentino, G. L. Losi, “Towards a real-time susceptibility assessment of rainfall-induced shallow landslides on a regional scale,” Nat. Hazards Earth Syst. Sci., vol. 11, no. 7, pp. 1927–1947, 2011, doi: https://doi.org/10.5194/nhess-11-1927-2011
  35. T. Fawcett, “An introduction to ROC analysis,” Pattern Recognit. Lett., vol. 27, no. 8, 2006, doi: https://doi.org/10.1016/j.patrec.2005.10.010
  36. I. Yilmaz, “A case study from Koyulhisar (Sivas-Turkey) for landslide susceptibility mapping by artificial neural networks,” Bull. Eng. Geol. Environ., vol. 68, no. 3, 2009, doi: https://doi.org/10.1007/s10064-009-0185-2
  37. I. Yilmaz, “Landslide susceptibility mapping using frequency ratio, logistic regression, artificial neural networks and their comparison: A case study from Kat landslides (Tokat-Turkey),” Comput. Geosci., vol. 35, no. 6, 2009, doi: https://doi.org/10.1016/j.cageo.2008.08.007