Vol. 23 Núm. 1 (2024): Revista UIS Ingenierías
Artículos

Estrategia de Control Secundario sin Comunicaciones para Microrredes Aisladas Desbalanceadas

Andrés Mauricio Salinas-Cala
Universidad Industrial de Santander
Juan Manuel Rey-López
Universidad Industrial de Santander
María Alejandra Mantilla-Villalobos
Universidad Industrial de Santander

Publicado 2024-04-16

Palabras clave

  • control secundario,
  • control jerárquico,
  • control descentralizado,
  • microrredes aisladas,
  • cargas desbalanceadas,
  • regulación de frecuencia,
  • generación distribuida,
  • reparto de potencia,
  • componentes simétricas,
  • potencia reactiva negativa
  • ...Más
    Menos

Cómo citar

Salinas-Cala , A. M., Rey-López , J. M. ., & Mantilla-Villalobos, M. A. . (2024). Estrategia de Control Secundario sin Comunicaciones para Microrredes Aisladas Desbalanceadas. Revista UIS Ingenierías, 23(1), 115–126. https://doi.org/10.18273/revuin.v23n1-2024010

Resumen

En el contexto de la transición energética, las microrredes eléctricas se han convertido en una solución para la electrificación de zonas aisladas. En este tipo de aplicaciones, se suelen implementar redes de baja tensión con cargas  desbalanceadas. No obstante, la mayoría de las estrategias de control jerárquico presentadas en la literatura, han sido diseñadas para operar ante la presencia de cargas balanceadas. Por esta razón, es relevante estudiar cómo las estrategias de control pueden adaptarse a este escenario, especialmente aquellas que reducen la dependencia de los sistemas de comunicaciones, con el objetivo de mejorar la flexibilidad y confiabilidad. Este trabajo presenta una estrategia de control secundario que no requiere el uso de comunicaciones para operar en microrredes aisladas con cargas desbalanceadas. La estrategia garantiza una adecuada compartición de la potencia entre los generadores distribuidos que componen la microrred. Se presentan resultados de simulación en Matlab/Simulink para validar la estrategia propuesta.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. C. Breyer, S. Khalili, D. Bogdanov, M. Ram, A. Solomon-Oyewo, A. Aghahosseini, A. Gulagi, A. A. Solomon, D. Keiner, G. Lopez, P. Østergaard, H. Lund, B. V. Mathiesen, M. Z. Jacobson, M. Victoria, S. Teske, T. Pregger, V. Fthenakis, M. Raugei, H. Holttinen, U. Bardi, A. Hoekstra, B. Sovacool, “On the History and Future of 100% Renewable Energy Systems Research”, IEEE Access, vol. 10, pp. 78176-78218, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3193402
  2. M. Farrokhabadi, C. A. Cañizares, J. W. Simpson-Porco, E. Nasr, L. Fan, P. A. Mendoza-Araya, R. Tonkoski, U. Tamrakar, N. Hatziargyriou, D. Lagos, R. W. Wies, M. Paolone, M. Liserre, L. Meegahapola, M. Kabalan, A. H. Hajimiragha, D. Peralta, M. A. Elizondo, K. P. Schneider, F. K. Tuffner, J. Reilly, “Microgrid Stability Definitions, Analysis, and Examples”, IEEE Transactions on Power Systems, vol. 35, no. 1, pp. 13-29, 2020, doi: https://doi.org/10.1109/TPWRS.2019.2925703
  3. D. E. Olivares, A. Mehrizi-Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. Gomis-Bellmunt, M. Saeedifard, R. Palma-Behnke, G. A. Jiménez-Estévez, N. D. Hatziargyriou, “Trends in Microgrid Control”, IEEE Transactions on Smart Grid, vol. 5, no. 4, pp. 1905-1919, 2014, doi: https://doi.org/10.1109/TSG.2013.2295514
  4. M. Aybar-Mejía, J. Villanueva, D. Mariano-Hernández, F. Santos, A. Molina-García, “A Review of Low-Voltage Renewable Microgrids: Generation Forecasting and Demand-Side Management Strategies”, Electronics, vol. 10, no. 17, p. 2093, 2021, doi: https://doi.org/10.3390/electronics10172093
  5. J. M. Rey, G. A. Vera, P. Acevedo-Rueda, J. Solano, M. A. Mantilla, J. Llanos, D. Sáez, “A Review of Microgrids in Latin America: Laboratories and Test Systems”, IEEE Latin America Transactions, vol. 20, no. 6, pp. 1000-1011, 2022, doi: https://doi.org/10.1109/TLA.2022.9757743
  6. Y. Yoldas ̧, A. ̈Onen, S. Muyeen, A. V. Vasilakos, I. Alan, “Enhancing smart grid with microgrids: Challenges and opportunities”, Renewable and Sustainable Energy Reviews, vol. 72, pp. 205–214, 2017, doi: https://doi.org/10.1016/j.rser.2017.01.064
  7. S. Parhizi, H. Lotfi, A. Khodaei, S. Bahramirad, “State of the Art in Research on Microgrids: A Review”, IEEE Access, vol. 3, pp. 890-925, 2015, doi: https://doi.org/10.1109/ACCESS.2015.2443119
  8. J. M. Rey-López, P. P. Vergara-Barrios, G. A. Osma-Pinto, G. Ordóñez-Plata, “Generalities about Design and Operation of Microgrids”, DYNA, vol. 82, no. 192, pp. 109–119, 2015, doi: https://doi.org/10.15446/dyna.v82n192.48586
  9. J. M. Rey, I. Jiménez-Vargas, P. P. Vergara, G. Osma-Pinto, J. Solano, “Sizing of an autonomous microgrid considering droop control”, International Journal of Electrical Power Energy Systems, vol. 136, p. 107634, 2022, doi: https://doi.org/10.1016/j.ijepes.2021.107634
  10. T. S. Ustun, C. Ozansoy, A. Zayegh, “Recent developments in microgrids and example cases around the world—a review”, Renewable and Sustainable Energy Reviews, vol. 15, no. 8, pp. 4030–4041, 2011, doi: https://doi.org/10.1016/j.rser.2011.07.033
  11. S. Ansari, A. Chandel, M. Tariq, “A Comprehensive Review on Power Converters Control and Control Strategies of AC/DC Microgrid”, IEEE Access, vol. 9, pp. 17998-18015, 2021, doi: https://doi.org/10.1109/ACCESS.2020.3020035
  12. J. M. Rey, P. P. Vergara, J. Solano, G. Ordóñez, “Design and Optimal Sizing of Microgrids”, in Microgrids Design and Implementation, Cham, Switzerland: Springer Cham, 2019, pp. 337–367.
  13. Y. Khayat, Q. Shafiee, R. Heydari, M. Naderi, T. Dragičević, J. W. Simpson-Porco, F. Dörfler, M. Fathi, F. Blaabjerg, J. M. Guerrero, H. Bevrani, “On the Secondary Control Architectures of AC Microgrids: An Overview”, IEEE Transactions on Power Electronics, vol. 35, no. 6, pp. 6482-6500, 2020, doi: https://doi.org/10.1109/TPEL.2019.2951694
  14. S. Liu, X. Wang, P. X. Liu, “Impact of Communication Delays on Secondary Frequency Control in an Islanded Microgrid”, IEEE Transactions on Industrial Electronics, vol. 62, no. 4, pp. 2021-2031, 2015, doi: https://doi.org/10.1109/TIE.2014.2367456
  15. P. Martí, M. Velasco, E. X. Martín, L. García de Vicuña, J. Miret, M. Castilla, “Performance Evaluation of Secondary Control Policies With Respect to Digital Communications Properties in Inverter-Based Islanded Microgrids”, IEEE Transactions on Smart Grid, vol. 9, no. 3, pp. 2192-2202, 2018, doi: https://doi.org/10.1109/TSG.2016.2608323
  16. A. K. Sahoo, K. Mahmud, M. Crittenden, J. Ravishankar, S. Padmanaban, F. Blaabjerg, “Communication-Less Primary and Secondary Control in Inverter-Interfaced AC Microgrid: An Overview”, IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 9, no. 5, pp. 5164-5182, 2021, doi: https://doi.org/10.1109/JESTPE.2020.2974046
  17. M. Hua, H. Hu, Y. Xing, J. M. Guerrero, “Multilayer Control for Inverters in Parallel Operation Without Intercommunications”, IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3651-3663, 2012, doi: https://doi.org/10.1109/TPEL.2012.2186985
  18. H. Xin, L. Zhang, Z. Wang, D. Gan, K. P. Wong, “Control of Island AC Microgrids Using a Fully Distributed Approach”, IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 943-945, 2015, doi: https://doi.org/10.1109/TSG.2014.2378694
  19. H. Xin, R. Zhao, L. Zhang, Z. Wang, K. P. Wong, W. Wei, “A Decentralized Hierarchical Control Structure and Self-Optimizing Control Strategy for F-P Type DGs in Islanded Microgrids”, IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 3-5, 2016, doi: https://doi.org/10.1109/TSG.2015.2473096
  20. J. M. Rey, P. Martí, M. Velasco, J. Miret, M. Castilla, “Secondary Switched Control With no Communications for Islanded Microgrids”, IEEE Transactions on Industrial Electronics, vol. 64, no. 11, pp. 8534-8545, 2017, doi: https://doi.org/10.1109/TIE.2017.2703669
  21. J. M. Rey, C. X. Rosero, M. Velasco, P. Martí, J. Miret, M. Castilla, “Local Frequency Restoration for Droop-Controlled Parallel Inverters in Islanded Microgrids”, IEEE Transactions on Energy Conversion, vol. 34, no. 3, pp. 1232-1241, 2019, doi: https://doi.org/10.1109/TEC.2018.2886267
  22. N. Vedaste, N. Emile, Z. Xu, N. Olivier, P. Simiyu, N. Innocent, “Secondary Control for Power Sharing in a Standalone Microgrid under Unequal Feeder Impedance and Complex Loads”, in 2018 2nd IEEE Conference on Energy Internet and Energy System Integration (EI2), Beijing, 2018, pp. 1-6, doi: https://doi.org/10.1109/EI2.2018.8582271
  23. Y. Jia, D. Li, Z. Chen, “Unbalanced power sharing for islanded droop-controlled microgrids”, Journal of Power Electronics, vol. 19, pp. 234–243, 2019, doi: https://doi.org/10.6113/JPE.2019.19.1.234
  24. J. Rey, P. Vergara, M. Castilla, A. Camacho, M. Velasco, P. Martí, “Droop-free hierarchical control strategy for inverter-based ac microgrids”, IET Power Electronics, vol. 13, no. 7, pp. 1403–1415, 2020, doi: https://doi.org/10.1049/iet-pel.2019.0705
  25. H. Han, X. Hou, J. Yang, J. Wu, M. Su, J. M. Guerrero, “Review of Power Sharing Control Strategies for Islanding Operation of AC Microgrids”, IEEE Transactions on Smart Grid, vol. 7, no. 1, pp. 200-215, 2016, doi: https://doi.org/10.1109/TSG.2015.2434849
  26. J. C. Vasquez, J. M. Guerrero, J. Miret, M. Castilla, L. G. de Vicuña, “Hierarchical Control of Intelligent Microgrids”, IEEE Industrial Electronics Magazine, vol. 4, no. 4, pp. 23-29, 2010, doi: https://doi.org/10.1109/MIE.2010.938720
  27. T. L. Vandoorn, J. C. Vasquez, J. De Kooning, J. M. Guerrero, L. Vandevelde, “Microgrids: Hierarchical Control and an Overview of the Control and Reserve Management Strategies”, IEEE Industrial Electronics Magazine, vol. 7, no. 4, pp. 42-55, 2013, doi: https://doi.org/10.1109/MIE.2013.2279306
  28. J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna, M. Castilla, “Hierarchical Control of Droop-Controlled AC and DC Microgrids—A General Approach Toward Standardization”, IEEE Transactions on Industrial Electronics, vol. 58, no. 1, pp. 158-172, 2011, doi: https://doi.org/10.1109/TIE.2010.2066534
  29. J. M. Rey, J. Torres-Martínez, and M. Castilla, “Secondary control for islanded microgrids”, in Microgrids Design and Implementation, Cham, Switzerland: Springer Cham, 2019, pp. 171–193.
  30. Y. Han, H. Li, P. Shen, E. A. A. Coelho, J. M. Guerrero, “Review of Active and Reactive Power Sharing Strategies in Hierarchical Controlled Microgrids”, IEEE Transactions on Power Electronics, vol. 32, no. 3, pp. 2427-2451, 2017, doi: https://doi.org/10.1109/TPEL.2016.2569597
  31. P. P. Vergara, J. C. López, J. M. Rey, L. C. P. da Silva, M. J. Rider, “Energy management in microgrids”, in Microgrids Design and Implementation, Cham, Switzerland: Springer Cham, 2019, pp. 195–216.
  32. J. M. Rey, J. Solano, J. Torres-Martínez, J. Miret, M. M. Ghahderijani, M. Castilla, “Multi-layer active power and frequency control strategy for industrial microgrids”, in IECON 2017 - 43rd Annual Conference of the IEEE Industrial Electronics Society, Beijing, 2017, pp. 2588-2593, doi: https://doi.org/10.1109/IECON.2017.8216435
  33. Z. Cheng, J. Duan, M. Y. Chow, “To Centralize or to Distribute: That Is the Question: A Comparison of Advanced Microgrid Management Systems”, IEEE Industrial Electronics Magazine, vol. 12, no. 1, pp. 6-24, 2018, doi: https://doi.org/10.1109/MIE.2018.2789926
  34. J. M. Rey, P. P. Vergara, M. Castilla, A. Camacho, J. Miret, “Local hierarchical control for industrial microgrids with improved frequency regulation”, in 2018 IEEE International Conference on Industrial Technology (ICIT), Lyon, 2018, pp. 1019-1024, doi: https://doi.org/10.1109/ICIT.2018.8352318
  35. B. A. Moser, T. Natschläger, “On Stability of Distance Measures for Event Sequences Induced by Level-Crossing Sampling”, IEEE Transactions on Signal Processing, vol. 62, no. 8, pp. 1987-1999, 2014, doi: https://doi.org/10.1109/TSP.2014.2305642
  36. U. P. Yagnik, M. D. Solanki, “Comparison of L, LC & LCL filter for grid connected converter”, in 2017 International Conference on Trends in Electronics and Informatics (ICEI), Tirunelveli, 2017, pp. 455-458, doi: https://doi.org/10.1109/ICOEI.2017.8300968
  37. S. Riyadi, “Inverse Clarke Transformation based control method of a three-phase inverter for PV-Grid systems”, in 2014 The 1st International Conference on Information Technology, Computer, and Electrical Engineering, Semarang, 2014, pp. 351-355, doi: https://doi.org/10.1109/ICITACEE.2014.7065770
  38. A. Milczarek, “Harmonic power sharing between power electronics converters in islanded AC microgrid”, in 2017 Progress in Applied Electrical Engineering (PAEE), Koscielisko, 2017, pp. 1-7, doi: https://doi.org/10.1109/PAEE.2017.8008991