Vol. 23 Núm. 4 (2024): Revista UIS Ingenierías
Artículos

Particionado óptico de doble polarización para C-RAN en redes 5G basadas en Radio-sobre-Fibra

Gustavo Puerto-Leguizamón
Universidad Distrital Francisco José de Caldas
Carlos Arturo Suárez-Fajardo
Universidad Distrital Francisco José de Caldas

Publicado 2024-11-24

Palabras clave

  • Particionado espectral,
  • fronthaul,
  • 5G,
  • generación de señal óptica,
  • Radio-sobre-Fibra

Cómo citar

Puerto-Leguizamón, G., & Suárez-Fajardo, C. A. (2024). Particionado óptico de doble polarización para C-RAN en redes 5G basadas en Radio-sobre-Fibra. Revista UIS Ingenierías, 23(4), 57–68. https://doi.org/10.18273/revuin.v23n4-2024005

Resumen

Este artículo investiga el potencial de un sistema de particionado espectral óptico de doble polarización para permitir enlaces ópticos de alta capacidad en el segmento de la red de acceso a radio en la nube (C-RAN, Cloud-Radio Access Network) basados ​​en radio sobre fibra (RoF, Radio-over-Fiber) de una red 5G. Se describe analíticamente el proceso de generación de señal basado en particionado óptico con polarización dual y se realiza una demostración experimental para evaluar la viabilidad de la propuesta. Los resultados experimentales se centran en medir la magnitud del vector de error (EVM, Error Vector Magnitude) para ranuras ópticas de doble polarización de 0.1 nm, 0.5 nm y 1 nm. Los datos se miden experimentalmente para señales QPSK y 64QAM en frecuencias portadoras de 1.7 GHz y 3.5 GHz en 10 km de fibra óptica monomodo. Los resultados demuestran que una partición óptica de 0.1 nm con QPSK a 1.7 GHz conduce a un EVM de 2.4%, mientras que para 64QAM se observó un EVM del 4.5% bajo las mismas condiciones. Además, el modelo de simulación proyecta la viabilidad del transporte RoF de señales 64QAM a 1.7 GHz y 3.5 GHz en enlaces de fibra de 25 km y 16 km respectivamente.

 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. B. Agarwal, M. A. Togou, M. Marco, G. -M. Muntean, “A Comprehensive Survey on Radio Resource Management in 5G HetNets: Current Solutions, Future Trends and Open Issues,” in IEEE Communications Surveys & Tutorials, vol. 24, no. 4, pp. 2495-2534, Fourthquarter 2022, doi: https://doi.org/10.1109/COMST.2022.3207967
  2. J. Brenes et al., "Network slicing architecture for SDM and analog-radio-over-fiber-based 5G fronthaul networks,” in Journal of Optical Communications and Networking, vol. 12, no. 4, pp. B33-B43, April 2020, doi: https://doi.org/10.1364/JOCN.381912
  3. X. Liu, “Enabling Optical Network Technologies for 5G and Beyond,” in Journal of Lightwave Technology, vol. 40, no. 2, pp. 358-367, 2022, doi: https://doi.org/10.1109/JLT.2021.3099726
  4. L. M. P. Larsen, H. L. Christiansen, S. Ruepp and M. S. Berger, “Toward Greener 5G and Beyond Radio Access Networks—A Survey,” in IEEE Open Journal of the Communications Society, vol. 4, pp. 768-797, 2023, doi: https://doi.org/10.1109/OJCOMS.2023.3257889
  5. I. Coddington et al., “Dual-comb spectroscopy,” Optica, vol. 3, no. 4, Apr. 2016, Art. no. 414, doi: https://doi.org/10.1364/OPTICA.3.000414
  6. J. Lin, H. Sepehrian, Y. Xu, L. A. Rusch and W. Shi, “Frequency Comb Generation Using a CMOS Compatible SiP DD-MZM for Flexible Networks,” in IEEE Photonics Technology Letters, vol. 30, no. 17, pp. 1495-1498, 2018, doi: https://doi.org/10.1109/LPT.2018.2856767
  7. M. Mazur et al., “High Spectral Efficiency Coherent Superchannel Transmission With Soliton Microcombs,” in Journal of Lightwave Technology, vol. 39, no. 13, pp. 4367-4373, July1, 2021, doi: https://doi.org/10.1109/JLT.2021.3073567
  8. H. Othman, X. Ouyang, C. Antony, F. Smyth and P. D. Townsend, “Spectrally-Sliced Coherent Receiver Utilizing a Gain-Switched Optical Frequency Comb,” in Journal of Lightwave Technology, vol. 41, no. 16, pp. 5262-5274, 2023, doi: https://doi.org/10.1109/JLT.2023.3256180
  9. M. Imran, P. M. Anandarajah, A. Kaszubowska-Anandarajah, N. Sambo, L. Potí, “A Survey of Optical Carrier Generation Techniques for Terabit Capacity Elastic Optical Networks,” in IEEE Communications Surveys & Tutorials, vol. 20, no. 1, pp. 211-263, Firstquarter 2018, doi: https://doi.org/10.1109/COMST.2017.2775039
  10. Hu, Hao and Oxenløwe, “Chip-based optical frequency combs for high-capacity optical communications”, Nanophotonics, vol. 10, no. 5, 2021, doi: https://doi.org/10.1515/nanoph-2020-0561
  11. C. Browning, D. Dass, P. Townsend, X. Ouyang, “Orthogonal Chirp-Division Multiplexing for Future Converged Optical/Millimeter-Wave Radio Access Networks,” in IEEE Access, vol. 10, pp. 3571-3579, 2022, doi: https://doi.org/10.1109/ACCESS.2021.3137716
  12. Lundberg, L., Mazur, M., Mirani, A. et al. “Phase-coherent lightwave communications with frequency combs”, Nat Commun , 2020, doi: https://doi.org/10.1038/s41467-019-14010-7
  13. C. Quevedo-Galán, V. Durán, A. Rosado, A. Pérez-Serrano, J. M. G. Tijero, and I. Esquivias, ”Gain-switched semiconductor lasers with pulsed excitation and optical injection for dual-comb spectroscopy,” Opt. Express, vol. 28, 33307-33317, 2020, doi: https://doi.org/10.1364/OE.404398
  14. C. Browning et al., “Gain-Switched Optical Frequency Combs for Future Mobile Radio-Over-Fiber Millimeter-Wave Systems,” in Journal of Lightwave Technology, vol. 36, no. 19, pp. 4602-4610, 2018, doi: https://doi.org/10.1109/JLT.2018.2841365
  15. M. Sun et al., “Spectrally Efficient Direct-Detection THz Communication System Enabled by Twin Single-Sideband Modulation and Polarization Division Multiplexing Techniques,” 2022 Asia Communications and Photonics Conference (ACP), Shenzhen, China, 2022, pp. 53-56, doi: https://doi.org/10.1109/ACP55869.2022.10088517
  16. C. Li, X. Chen, Z. Chen and F. Zhang, “Capacity Increase in Dual-polarization Nonlinear Frequency Division Multiplexing Systems with Probabilistic Shaping,” 2021 Opto-Electronics and Communications Conference (OECC), 2021, doi: https://doi.org/10.1364/OECC.2021.W1B.2
  17. Y. Cai et al., “Spectrally Efficient PDM-Twin-SSB Direct-Detection THz System Without Active Polarization Control,” in IEEE Photonics Technology Letters, vol. 35, no. 15, pp. 838-841, 2023, doi: https://doi.org/10.1109/LPT.2023.3275921
  18. Y. Lin et al., “Narrow Linewidth Hybrid InP-TriPleX Photonic Integrated Tunable Laser Based on Silicon Nitride Micro-ring Resonators,” 2018 Optical Fiber Communications Conference and Exposition (OFC), San Diego, CA, USA, 2018, pp. 1-3.
  19. Almae Technologies, “10G C-band DWDM EML laser chip,” 2023. [Online]. Available: https://almae-technologies.com/wp-content/uploads/2020/12/AEM2001-10-C1-15XX.pdf
  20. A. R. Totović, J. V. Crnjanski, M. M. Krstić and D. M. Gvozdić, “Numerical Study of the Small-Signal Modulation Bandwidth of Reflective and Traveling-Wave SOAs,” in Journal of Lightwave Technology, vol. 33, no. 13, pp. 2758-2764, 2015. doi: https://doi.org/10.1109/JLT.2015.2412252
  21. C. Dragone, “An N*N optical multiplexer using a planar arrangement of two-star couplers,” in IEEE Photonics Technology Letters, vol. 3, no. 9, pp. 812-815, Sept. 1991, doi: https://doi.org/10.1109/68.84502
  22. J. Song et al., “Low aberration concave grating for re-configurable optical add/drop multiplexer applications,” 2011 International Topical Meeting on Microwave Photonics jointly held with the 2011 Asia-Pacific Microwave Photonics Conference, Singapore, 2011, doi: https://doi.org/10.1109/MWP.2011.6088684
  23. ETSI, “5G, NR, Base Station (BS) radio transmission and reception (3GPP TS 38.104 version 15.5.0 Release 15),” 2019. [Online]. Available: https://www.etsi.org/deliver/etsi_ts/138100_138199/138104/15.05.00_60/ts_138104v150500p.pdf