Análisis detallado de la topología clásica Z-source para la protección de sistemas de alimentación de CC
Publicado 2024-09-15
Palabras clave
- sistemas de potencia de CC,
- dispositivos de electrónica de potencia (PE),
- disyuntores de fuente Z,
- OpenModelica,
- protección de CC
- interruptor de potencia,
- energía ...Más
Cómo citar
Derechos de autor 2024 Revista UIS Ingenierías
Esta obra está bajo una licencia internacional Creative Commons Atribución-SinDerivadas 4.0.
Resumen
Este documento presenta un análisis profundo de la topología Z-source clásica para la protección de sistemas de energía DC, un área previamente no explorada con tal detalle. Utilizando simulaciones en OpenModelica, el estudio ofrece valiosos conocimientos sobre el comportamiento de la topología Z-source, los mecanismos de protección y los procesos de disipación de energía. Incluye diagramas detallados, estados de conmutación y explicaciones de los principios operativos, apoyados por formas de onda que ilustran el flujo de energía a través de los componentes Z-source. Los hallazgos demuestran que el interruptor Z-source maneja eficazmente las condiciones de fallo al desconectar la fuente de la carga casi instantáneamente, en decenas de microsegundos. Las simulaciones confirman los modelos teóricos, mostrando que la topología Z-source disipa eficientemente la energía de fallo a través de inductores, capacitores y resistencias, protegiendo así el equipo sensible. Este análisis exhaustivo mejora la comprensión de la topología Z-source en sistemas de energía DC y establece una base sólida para futuras investigaciones y aplicaciones prácticas.
Descargas
Referencias
- J. E. Santos-Ramos, S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, N. Muñoz-Galeano, W. M. Villa-Acevedo, “Microgrid protection coordination considering clustering and metaheuristic optimization,” Energies, vol. 17, no. 1, 2024, doi: https://doi.org/10.3390/en17010210
- Y. Zahraoui, T. Korõtko, A. Rosin, T. E. K. Zidane, H. Agabus, S. Mekhilef, “A competitive framework for the participation of multimicrogrids in the community energy trading market: A case study,” IEEE Access, vol. 12, pp. 68 232–68 248, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3399168
- W. Guedes, C. Oliveira, T. A. Soares, B. H. Dias, M. Matos, “Collective asset sharing mechanisms for pv and bess in renewable energy communities,” IEEE Transactions on Smart Grid, vol. 15, no. 1, pp. 607–616, 2024, doi: https://doi.org/10.1109/TSG.2023.3288533
- J. Lu, B. Zhang, X. Hou, J. M. Guerrero, “A distributed control strategy for unbalanced voltage compensation in islanded ac microgrids without continuous communication,” IEEE Transactions on Industrial Electronics, vol. 70, no. 3, pp. 2628–2638, 2023, doi: https://doi.org/10.1109/TIE.2022.3169841
- M. W. Altaf, M. T. Arif, S. N. Islam, M. E. Haque, “Microgrid protection challenges and mitigation approaches–a comprehensive review,” IEEE Access, vol. 10, pp. 38 895– 38 922, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3165011
- S. K. Prince, S. Affijulla, G. Panda, “Protection of dc microgrids based on complex power during faults in on/off-grid scenarios,” IEEE Transactions on Industry Applications, vol. 59, no. 1, pp. 244–254, 2023, doi: https://doi.org/10.1109/TIA.2022.3206171
- S. Augustine, J. E. Quiroz, M. J. Reno, S. Brahma, “Dc microgrid protection: Review and challenges,” U.S. Department of Energy Office of Scientific and Technical Information, United States, Tech. Rep., 8 2018.
- B. Bachmann, G. Mauthe, E. Ruoss, H. Lips, J. Porter, J. Vithayathil, “Development of a 500kv airblast hvdc circuit breaker,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-104, no. 9, pp. 2460–2466, 1985, doi: https://doi.org/10.1109/TPAS.1985.318991
- B. Baliga, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Letters, vol. 10, no. 10, pp. 455– 457, 1989, doi: https://doi.org/10.1109/55.43098
- R. Fu, K. C. Montross, “A new method of coordinating zcbs and fuses for a reliable shortcircuit protection in dc power networks,” IEEE Access, vol. 10, pp. 63 270–63 279, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3183234
- C. E. Ugalde-Loo, Y. Wang, S. Wang, W. Ming, J. Liang, W. Li, “Review on Z-source solid state circuit breakers for dc distribution networks,” CSEE Journal of Power and Energy Systems, vol. 9, no. 1, pp. 15–27, 2023, doi: https://doi.org/10.17775/CSEEJPES.2022.04320
- N. Bayati, H. R. Baghaee, A. Hajizadeh, M. Soltani, “A fuse saving scheme for dc microgrids with high penetration of renewable energy resources,” IEEE Access, vol. 8, pp. 137 407–137 417, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3012195
- N. Bayati, A. Hajizadeh, M. Soltani, “Impact of faults and protection methods on dc microgrids operation,” in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp. 1–6, 2018, doi: https://doi.org/10.1109/EEEIC.2018.8494631
- S. Beheshtaein, M. Savaghebi, J. C. Vasquez, J. M. Guerrero, “Protection of ac and dc microgrids: Challenges, solutions and future trends,” in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, pp. 005 253–005 260, 2015, doi: https://doi.org/10.1109/IECON.2015.7392927
- R. Cuzner, D. MacFarlin, D. Clinger, M. Rumney, G. Castles, “Circuit breaker protection considerations in power converter-fed dc systems,” in 2009 IEEE Electric Ship Technologies Symposium, pp. 360–367, 2009, doi: https://doi.org/10.1109/ESTS.2009.4906537
- K. A. Corzine, R. W. Ashton, “Structure and analysis of the z-source mvdc breaker,” in 2011 IEEE Electric Ship Technologies Symposium, pp. 334–338, 2011, doi: https://doi.org/10.1109/ESTS.2011.5770893
- K. A. Corzine, R. Ashton, “A new z-source dc circuit breaker,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2796–2804, 2012, doi: https://doi.org/10.1109/TPEL.2011.2178125
- A. Maqsood, A. Overstreet, K. A. Corzine, “Modified z-source dc circuit breaker topologies,” IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7394–7403, 2016, doi: https://doi.org/10.1109/TPEL.2015.2511588
- P. Prempraneerach, M. G. Angle, J. L. Kirt- ley, G. E. Karniadakis, and C. Chryssostomidis, “Optimization of a z-source dc circuit breaker,” in 2013 IEEE Electric Ship Technologies Symposium (ESTS), pp. 480–486, 2013, doi: https://doi.org/10.1109/ESTS.2013.6523780
- T. Li, Y. Li, N. Liu, “A new topological structure of z-source dc circuit breaker,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp. 3294–3298, 2022, doi: https://doi.org/10.1109/TCSII.2022.3156575
- L. Yi, J. Moon, “Bidirectional q-z-source dc circuit breaker,” IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9524–9538, 2022, doi: https://doi.org/10.1109/TPEL.2022.3153889
- V. R. I, S. N. Banavath, S. Thamballa, “Modified z-source dc circuit breaker with enhanced performance during commissioning and reclosing,” IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 910–919, 2022, doi: https://doi.org/10.1109/TPEL.2021.3092773
- Z. Zhou, J. Jiang, S. Ye, D. Yang, J. Jiang, “Novel bidirectional o-z-source circuit breaker for dc microgrid protection,” IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 1602– 1613, 2021, doi: https://doi.org/10.1109/TPEL.2020.3006889