Vol. 23 Núm. 3 (2024): Revista UIS Ingenierías
Artículos

Análisis detallado de la topología clásica Z-source para la protección de sistemas de alimentación de CC

Bayron Perea -Mena
Universidad de Antioquia
Nicolás Muñoz -Galeano
Universidad de Antioquia
Jesús María López -Lezama
Universidad de Antioquia

Publicado 2024-09-15

Palabras clave

  • sistemas de potencia de CC,
  • dispositivos de electrónica de potencia (PE),
  • disyuntores de fuente Z,
  • OpenModelica,
  • protección de CC,
  • interruptor de potencia,
  • energía
  • ...Más
    Menos

Cómo citar

Perea -Mena , B., Muñoz -Galeano, N. ., & López -Lezama, J. M. . (2024). Análisis detallado de la topología clásica Z-source para la protección de sistemas de alimentación de CC. Revista UIS Ingenierías, 23(3), 85–92. https://doi.org/10.18273/revuin.v23n3-2024007

Resumen

Este documento presenta un análisis profundo de la topología Z-source clásica para la protección de sistemas de energía DC, un área previamente no explorada con tal detalle. Utilizando simulaciones en OpenModelica, el estudio ofrece valiosos conocimientos sobre el comportamiento de la topología Z-source, los mecanismos de protección y los procesos de disipación de energía. Incluye diagramas detallados, estados de conmutación y explicaciones de los principios operativos, apoyados por formas de onda que ilustran el flujo de energía a través de los componentes Z-source. Los hallazgos demuestran que el interruptor Z-source maneja eficazmente las condiciones de fallo al desconectar la fuente de la carga casi instantáneamente, en decenas de microsegundos. Las simulaciones confirman los modelos teóricos, mostrando que la topología Z-source disipa eficientemente la energía de fallo a través de inductores, capacitores y resistencias, protegiendo así el equipo sensible. Este análisis exhaustivo mejora la comprensión de la topología Z-source en sistemas de energía DC y establece una base sólida para futuras investigaciones y aplicaciones prácticas.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. J. E. Santos-Ramos, S. D. Saldarriaga-Zuluaga, J. M. López-Lezama, N. Muñoz-Galeano, W. M. Villa-Acevedo, “Microgrid protection coordination considering clustering and metaheuristic optimization,” Energies, vol. 17, no. 1, 2024, doi: https://doi.org/10.3390/en17010210
  2. Y. Zahraoui, T. Korõtko, A. Rosin, T. E. K. Zidane, H. Agabus, S. Mekhilef, “A competitive framework for the participation of multimicrogrids in the community energy trading market: A case study,” IEEE Access, vol. 12, pp. 68 232–68 248, 2024, doi: https://doi.org/10.1109/ACCESS.2024.3399168
  3. W. Guedes, C. Oliveira, T. A. Soares, B. H. Dias, M. Matos, “Collective asset sharing mechanisms for pv and bess in renewable energy communities,” IEEE Transactions on Smart Grid, vol. 15, no. 1, pp. 607–616, 2024, doi: https://doi.org/10.1109/TSG.2023.3288533
  4. J. Lu, B. Zhang, X. Hou, J. M. Guerrero, “A distributed control strategy for unbalanced voltage compensation in islanded ac microgrids without continuous communication,” IEEE Transactions on Industrial Electronics, vol. 70, no. 3, pp. 2628–2638, 2023, doi: https://doi.org/10.1109/TIE.2022.3169841
  5. M. W. Altaf, M. T. Arif, S. N. Islam, M. E. Haque, “Microgrid protection challenges and mitigation approaches–a comprehensive review,” IEEE Access, vol. 10, pp. 38 895– 38 922, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3165011
  6. S. K. Prince, S. Affijulla, G. Panda, “Protection of dc microgrids based on complex power during faults in on/off-grid scenarios,” IEEE Transactions on Industry Applications, vol. 59, no. 1, pp. 244–254, 2023, doi: https://doi.org/10.1109/TIA.2022.3206171
  7. S. Augustine, J. E. Quiroz, M. J. Reno, S. Brahma, “Dc microgrid protection: Review and challenges,” U.S. Department of Energy Office of Scientific and Technical Information, United States, Tech. Rep., 8 2018.
  8. B. Bachmann, G. Mauthe, E. Ruoss, H. Lips, J. Porter, J. Vithayathil, “Development of a 500kv airblast hvdc circuit breaker,” IEEE Transactions on Power Apparatus and Systems, vol. PAS-104, no. 9, pp. 2460–2466, 1985, doi: https://doi.org/10.1109/TPAS.1985.318991
  9. B. Baliga, “Power semiconductor device figure of merit for high-frequency applications,” IEEE Electron Device Letters, vol. 10, no. 10, pp. 455– 457, 1989, doi: https://doi.org/10.1109/55.43098
  10. R. Fu, K. C. Montross, “A new method of coordinating zcbs and fuses for a reliable shortcircuit protection in dc power networks,” IEEE Access, vol. 10, pp. 63 270–63 279, 2022, doi: https://doi.org/10.1109/ACCESS.2022.3183234
  11. C. E. Ugalde-Loo, Y. Wang, S. Wang, W. Ming, J. Liang, W. Li, “Review on Z-source solid state circuit breakers for dc distribution networks,” CSEE Journal of Power and Energy Systems, vol. 9, no. 1, pp. 15–27, 2023, doi: https://doi.org/10.17775/CSEEJPES.2022.04320
  12. N. Bayati, H. R. Baghaee, A. Hajizadeh, M. Soltani, “A fuse saving scheme for dc microgrids with high penetration of renewable energy resources,” IEEE Access, vol. 8, pp. 137 407–137 417, 2020, doi: https://doi.org/10.1109/ACCESS.2020.3012195
  13. N. Bayati, A. Hajizadeh, M. Soltani, “Impact of faults and protection methods on dc microgrids operation,” in 2018 IEEE International Conference on Environment and Electrical Engineering and 2018 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I CPS Europe), pp. 1–6, 2018, doi: https://doi.org/10.1109/EEEIC.2018.8494631
  14. S. Beheshtaein, M. Savaghebi, J. C. Vasquez, J. M. Guerrero, “Protection of ac and dc microgrids: Challenges, solutions and future trends,” in IECON 2015 - 41st Annual Conference of the IEEE Industrial Electronics Society, pp. 005 253–005 260, 2015, doi: https://doi.org/10.1109/IECON.2015.7392927
  15. R. Cuzner, D. MacFarlin, D. Clinger, M. Rumney, G. Castles, “Circuit breaker protection considerations in power converter-fed dc systems,” in 2009 IEEE Electric Ship Technologies Symposium, pp. 360–367, 2009, doi: https://doi.org/10.1109/ESTS.2009.4906537
  16. K. A. Corzine, R. W. Ashton, “Structure and analysis of the z-source mvdc breaker,” in 2011 IEEE Electric Ship Technologies Symposium, pp. 334–338, 2011, doi: https://doi.org/10.1109/ESTS.2011.5770893
  17. K. A. Corzine, R. Ashton, “A new z-source dc circuit breaker,” IEEE Transactions on Power Electronics, vol. 27, no. 6, pp. 2796–2804, 2012, doi: https://doi.org/10.1109/TPEL.2011.2178125
  18. A. Maqsood, A. Overstreet, K. A. Corzine, “Modified z-source dc circuit breaker topologies,” IEEE Transactions on Power Electronics, vol. 31, no. 10, pp. 7394–7403, 2016, doi: https://doi.org/10.1109/TPEL.2015.2511588
  19. P. Prempraneerach, M. G. Angle, J. L. Kirt- ley, G. E. Karniadakis, and C. Chryssostomidis, “Optimization of a z-source dc circuit breaker,” in 2013 IEEE Electric Ship Technologies Symposium (ESTS), pp. 480–486, 2013, doi: https://doi.org/10.1109/ESTS.2013.6523780
  20. T. Li, Y. Li, N. Liu, “A new topological structure of z-source dc circuit breaker,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 69, no. 7, pp. 3294–3298, 2022, doi: https://doi.org/10.1109/TCSII.2022.3156575
  21. L. Yi, J. Moon, “Bidirectional q-z-source dc circuit breaker,” IEEE Transactions on Power Electronics, vol. 37, no. 8, pp. 9524–9538, 2022, doi: https://doi.org/10.1109/TPEL.2022.3153889
  22. V. R. I, S. N. Banavath, S. Thamballa, “Modified z-source dc circuit breaker with enhanced performance during commissioning and reclosing,” IEEE Transactions on Power Electronics, vol. 37, no. 1, pp. 910–919, 2022, doi: https://doi.org/10.1109/TPEL.2021.3092773
  23. Z. Zhou, J. Jiang, S. Ye, D. Yang, J. Jiang, “Novel bidirectional o-z-source circuit breaker for dc microgrid protection,” IEEE Transactions on Power Electronics, vol. 36, no. 2, pp. 1602– 1613, 2021, doi: https://doi.org/10.1109/TPEL.2020.3006889