Vol. 15 Núm. 2 (2016): Revista UIS Ingenierías
Artículos

Algoritmo de encaminamiento con reconfiguración de topología para red de sensores inalámbricos aplicada a una Microrred en modo “Isla”

Elvis Eduardo Gaona
Universidad Distrital Francisco José de Caldas
Biografía
Pedro Alejandro Mancera
Universidad Santo Tomás
Cesar Leonardo Trujillo
Universidad Distrital Francisco José de Caldas
Portada RUI 15.2

Publicado 2016-07-23

Palabras clave

  • AODV,
  • microrred,
  • redes de sensores inalámbricos

Cómo citar

Gaona, E. E., Mancera, P. A., & Trujillo, C. L. (2016). Algoritmo de encaminamiento con reconfiguración de topología para red de sensores inalámbricos aplicada a una Microrred en modo “Isla”. Revista UIS Ingenierías, 15(2), 93–104. https://doi.org/10.18273/revuin.v15n2-2016008

Resumen

Las microrredes eléctricas, al ser consideradas una alternativa para la generación y distribución de electricidad en entornos rurales apartados de la red de distribución principal, necesitan nuevas estrategias de intercambio de datos entre los generadores distribuidos según el esquema de control elegido para la microrred, con el fin de entregar energía eléctrica de buena calidad. En el presente articulo se realiza el análisis del algoritmo de encaminamiento por demanda AODV usado en redes Ad-hoc sobre Wi-Fi, en un entorno de simulación empleando OMNET++, aplicado al intercambio de datos de control en una microrred eléctrica aislada, esto con el fin de identificar la topología de red de telecomunicaciones adecuada para el esquema de control elegido en la microrred y lograr una reconfiguración en la topología aprovechando los procesos de descubrimiento y búsqueda de rutas del protocolo. Finalmente, se presentan las conclusiones.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

  1. M. A. Hussain, P. Khan, and Kwak kyung Sup, “WSN Research Activities for Military Application,” Adv. Commun. Technol. 2009. ICACT 2009. 11th Int. Conf., vol. 01, pp. 271–274, 2009.
  2. M. T. Lazarescu, “Design of a WSN platform for long-term environmental monitoring for IoT applications,” IEEE J. Emerg. Sel. Top. Circuits Syst., vol. 3, no. 1, pp. 45–54, 2013.
  3. S. W. Nourildean, “A Study of ZigBee Network Topologies for Wireless Sensor Network with One Coordinator and Multiple Coordinators,” Tikrit J. Eng. Sci., vol. 19, no. 4, pp. 65–81, 2012.
  4. M. Simek and P. Moravek, “Modeling of Energy Consumption of Zigbee Devices in Matlab Tool,” Elektrorevue, vol. 2, no. 3, pp. 41–46, 2011.
  5. Y. Luo, J. He, H. Liu, and L. Wu, “Application of the Distributed Generation , Micro and Smart Power Grid in the Urban Planning,” no. 2012, pp. 634–637, 2014.
  6. E. E. Gaona, C. L. Trujillo, and J. A. Guacaneme, “Rural Microgrids and its potential application in Colombia,” p. 29.
  7. N. D. Hatziargyriou, S. Member, I. A. Dimeas, S. M. Ieee, A. G. Tsikalakis, and S. Member, “Management of Microgrids Environment in Market.”
  8. I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless sensor networks: a survey,” Comput. Networks, vol. 38, pp. 393–422, 2002.
  9. J. R. V. Jeny and a D. Ananth, “Analysis of Routing Protocols for Wireless Sensor Networks: A Survey,” Int. J. Sci. Res., vol. 2, no. 2, 2013.
  10. N. Singh, R. Dua, and V. Mathur, “Wireless Sensor Networks: Architecture, Protocols, Simulator Tool,” Int. J., vol. 2, no. 5, pp. 229–233, 2012.
  11. F. Yao, S. H. Yang, and W. Zheng, “Mitigating interference caused by IEEE 802.11b in the IEEE 802.15.4 WSN within the environment of smart house,” Conf. Proc. - IEEE Int. Conf. Syst. Man Cybern., pp. 2800–2807, 2010.
  12. Y. Yu and Y. Yao, “Improved AODV routing protocol for wireless sensor networks and implementation using OPNET,” 2012 Third Int. Conf. Intell. Control Inf. Process., pp. 709–713, 2012.
  13. O. Ahmed, A. Sajid, M. A. Mehmood, and M. Sciences, “Comparison of Routing Protocols to Assess Network Lifetime of WSN,” vol. 8, no. 6, pp. 220–224, 2011.
  14. A. Kumar, A. Sharma, and K. Grewal, “Resolving the paradox between IEEE 802.15.4 and Zigbee,” 2014 Int. Conf. Reliab. Optim. Inf. Technol., no. Llc, pp. 484–486, 2014.
  15. D. Arora, E. Millman, and S. W. Neville, “Assessing the performance of AODV, DYMO, and OLSR routing protocols in the context of larger-scale denser MANETs,” IEEE Pacific RIM Conf. Commun. Comput. Signal Process. - Proc., pp. 675–679, 2011.
  16. N. Kumar, K. Vashishtha, and K. Babu, “A Comparative Study of AODV , DSR , and DYMO routing protocols using OMNeT ++,” no. September, pp. 735–739, 2013.
  17. D. W. Kum, J. S. Park, Y. Z. Cho, and B. Y. Cheon, “Performance evaluation of AODV and DYMO routing protocols in MANET,” 2010 7th IEEE Consum. Commun. Netw. Conf. CCNC 2010, pp. 1–2, 2010.
  18. Z. Hong-tu and M. Yue-qi, “Improved Routing Algorithm Research for ZigBee Network,” no. August, pp. 17–20, 2010.
  19. D. F. Ramírez and S. Céspedes, “Routing in Neighborhood Area Networks: A survey in the context of AMI communications,” J. Netw. Comput. Appl., vol. 55, pp. 68–80, 2015.
  20. S. Baudoin, I. Vechiu, and H. Camblong, “A review of voltage and frequency control strategies for islanded microgrid,” vol. 33, no. 0.
  21. M. R. D. Zadeh, a. Hajimiragha, M. Adamiak, a. Palizban, and S. Allan, “Design and implementation of a microgrid controller,” 2011 64th Annu. Conf. Prot. Relay Eng., pp. 137–145, 2011.
  22. S. Lu, M. a. Elizondo, N. Samaan, K. Kalsi, E. Mayhorn, R. Diao, C. Jin, and Y. Zhang, “Control strategies for distributed energy resources to maximize the use of wind power in rural microgrids,” IEEE Power Energy Soc. Gen. Meet., pp. 1–8, 2011.
  23. A. Narayanan, P. Peltoniemi, T. Kaipia, and J. Partanen, “Energy Management System for LVDC Island Networks Acknowledgments Keywords.”
  24. Y. Li and F. Nejabatkhah, “Overview of control, integration and energy management of microgrids,” J. Mod. Power Syst. Clean Energy, vol. 2, no. 3, pp. 212–222, 2014.
  25. Z. Jiang and X. Yu, “Active power - Voltage control scheme for islanding operation of inverter-interfaced microgrids,” 2009 IEEE Power Energy Soc. Gen. Meet. PES ’09, pp. 1–7, 2009.
  26. T. L. Vandoorn, J. D. M. De Kooning, B. Meersman, and L. Vandevelde, “Review of primary control strategies for islanded microgrids with power-electronic interfaces,” Renew. Sustain. Energy Rev., vol. 19, pp. 613–628, 2013.
  27. E. Egea-Lopez, “Simulation tools for wireless sensor networks,” Proc. …, pp. 2–9, 2005.
  28. P. Neves, J. Fonsec, and J. Rodrigue, “Simulation tools for wireless sensor networks in medicine: a comparative study,” Int. Jt. Conf. …, vol. 2, no. January, 2007.
  29. J. Pan, “A Survey of Network Simulation Tools: Current Status and Future Developments,” pp. 1–13, 2008.
  30. “OMNeT++ Discrete Event Simulation System.” [Online]. Available: https://omnetpp.org/doc/omnetpp/manual.
  31. “OPNET IT Guru Academic Edition.” [Online]. Available: www.opnet.com/university_program/itguru_academic_edition.
  32. V. K. Taksande and K. D. Kulat, “A simulation comparison among AODV, DSDV, DSR protocol with IEEE 802.11 MAC for grid topology in MANET,” Proc. - 2011 Int. Conf. Comput. Intell. Commun. Syst. CICN 2011, vol. 1, pp. 63–67, 2011.