Análisis multi-criterio para evaluar la capacidad de absorción de energía de tubos fabricados con láminas de metal expandido y sólidas

  • Dimas Smith Universidad Francisco de Miranda
  • Carlos Alberto Graciano Gallego Universidad Nacional de Colombia Facultad de Minas- Sede Medellín Departamento de Ingeniería Civil
  • Manuel Martínez Universidad Industrial de Santander


Un análisis multi-criterio ha sido desarrollado para evaluar la capacidad de absorción de energía de tubos circulares fabricados con láminas de metal expandido y láminas sólidas. Mediante un Proceso de Jerarquía Analítica (AHP - Analytic Hierarchy Process) se asignaron de peso a diferentes parámetros de carga y resistencia de impacto. Posteriormente, estos pesos han sido luego atribuidos a una Evaluación Proporcional Compleja (COPRAS - Complex Proportional Assessment) para seleccionar la mejor opción entre seis alternativas disponibles. Los resultados muestran que los tubos circulares fabricados con láminas de metal expandido y celdas individuales con orientación α=0º presentan características favorables para absorber energía de forma controlada y estable así como eficientes parámetros de diseño estructural. La metodología de análisis multi-criterio constituye una valiosa herramienta en los procesos de toma de decisiones para la selección de dispositivos empleados en aplicaciones de absorción de energía.

Palabras clave: Tubos circulares, láminas de metal expandido, proceso de jerarquía analítica, evaluación proporcional compleja, absorción de energía


La descarga de datos todavía no está disponible.


C. Graciano, G. Martínez and D. Smith, “Experimental investigation on the axial collapse of expanded metal tubes,” Thin-Walled Structures, vol. 47, no. 8-9, pp. 953-961, Ago-Sep, 2009.

A,A,A. Alghamdi, “Collapsible impact energy absorbers: an overview,” Thin-Walled Structures, vol. 39, no. 2, pp. 189-213, Feb, 2001.

A. Olabi, E. Morrisa and M. Hashmi, “Metallic tube type energy absorbers: a synopsis,” Thin-Walled Structures, vol. 45, no. 7-8, pp. 706-726, Jul-Ago, 2007.

D. Smith, C. Graciano and G. Martínez, “Quasistatic axial compression of concentric expanded metal tubes,” Thin-Walled Structures, vol. 84, pp. 70-76, 2014.

D. Smith, C. Graciano, G. Martínez and P. Teixeira, “Axial crushing of flattened expanded metal tubes,” Thin Walled Structures, vol. 85, pp. 42-49, Dec. 2014.

D. Smith, C. Graciano and G. Aparicio, “An empirical method for the estimation of yield strength on expanded metal meshes,” Rev. Fac. Ing. Univ. Ant. vol. 74, pp. 161-171, 2015.

D. Smith, C. Graciano and G. Aparicio, “Energy absorption capacity of expanded metal meshes subjected to tensile loading,” Rev. Fac. Ing. Univ. Ant., vol. 77, pp. 48-53, 2015.

N. M. Stefano, N. Casarotto Filho, L.G.L. Vergara and R.U.G. da Rocha, “COPRAS (Complex Proportional Assessment): state of the art research and its applications,” IEEE Latin America Transactions, vol. 13, no. 12, pp. 3899-3906, 2015.

O. Taylan, A. Bafail, R. Abdulaal and M. Kabli, “Construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies,” Int J Appl Soft Comput, vol. 17, pp. 105-116, Apr, 2014.

T. Boucher and E. McStravic, “Multi-attribute evaluation within a present value framework and its relation to the analytic hierarchy process,” Eng Econ, vol. 37, pp. 55-71, 1991.

F. Tarlochan and F. Samer, “Design of thin wall structures for energy absorption applications: design for crash injuries mitigation using magnesium alloy,” Int J Res Eng Tech, vol. 2, no. 7, pp. 24-36. 2013.

A. Mohammed, A. Hazem, and M. Ayman “Integrated Fuzzy (GMM) -TOPSIS model for best design concept and material selection process,” Int J Innov Res Sci Eng Technol, vol. 2, no. 11, pp. 6464-6486, 2013.

G. Zheng, S. Wu, G. Sun, G. Li, and Q. Li, “Crushing analysis of foam-filled single and bitubal polygonal thin-walled tubes,” International Journal of Mechanical Sciences, vol. 87, pp. 226-240, Oct, 2014.

N. Qiu, Y. Gao, J. Fang, Z. Feng, G. Sun, and Q. Li, “Crashworthiness analysis and design of multi-cell hexagonal columns under multiple loading cases,” Finite Elements in Analysis and Design, vol. 104, pp. 89-101. 2015.

S. Pirmohammad, and S.E. Marzdashti, “Crushing behavior of new designed multi-cell members subjected to axial and oblique quasi-static loads,” Thin-Walled Structures, vol. 108, pp. 291-304, 2016.

V. Gadakh, “Parametric optimization of wire electrical discharge machining using TOPSIS method,” Adv Produc Eng Manag, vol. 7, no. 3, pp. 157-164, 2012.

L. Wang, T. Raz, “Analytic hierarchy process based on data for problem,” Comput & IE, vol. 20, pp. 355-365, 1991.

V. Tarigopula, M. Langseth, O. Hopperstad, and A. Clausen, “Axial crushing of thin-walled high-strength steel sections,” Int J Impact Eng, vol. 32, pp. 847-882, 2005.

A. Puglsey, “The crumpling of tubular structures under impact conditions,” In: Proc. of the Symposium on the use of aluminium in railway rolling stock. Institute of Locomotive Engineers. The Aluminium Development Association, pp. 22-41, 1960.

S. Hosseinipour, G. Daneshi, “Energy absorption and mean load of thin-walled grooved tubes under axial compression,” Thin-Walled Structures, vol. 41, pp. 3146, 2003.

Z. Ahmad, “Impact and energy absorption of empty and foam-filled conical tubes,” Doctoral dissertation, Queensland University of Technology, 2009.

Y. Lou, C. Park and H. Huh, “Parameter study on the quasi-statically axial crush of frusta with small semiapical angles using finite element method,” Annual Conference. The Korean Society of Automotive Engineers. [En línea]. Disponible en: .pdf, 2008.

S. Chung, and G. Nurick, “The energy-absorbing characteristics of tubular structures with geometric and material modifications: An overview,” Appl Mech Rev, vol. 61, pp. 020802-1/020802-15, 2008.

R.H. Smith Jr, “Energy absorption of sine wave beams subjected to axial impact loading,” Doctoral dissertation, Clemson University, 2007.

ASTM A1011/A1011M-03a: Standard specification for steel, sheet and strip, hot-rolled, carbon, structural, high-strength low-alloy and high-strength low-alloy with improved formability. ASTM International, West Conshohoken, PA, 2003.

A. Aalberg, and B. Haugen, “An experimental investigation of a rectangular hollow steel section with solid corners and expanded metal sections,” Norwegian University of Science Technology. Technical Report, R8-97, p. 1-77, 1997.

S. Tung, and S. Tang, “Comparison of the saaty’s AHP and modified AHP for right and left eigenvector inconsistency,” European Journal of Operational Research, vol. 106, no. 1, pp. 123-128, 1998.

T. Saaty, The analytic hierarchy process. Ed. McGraw-Hill, New York, 1980.

T. Saaty, “Priority setting in complex problems,” IEEE Trans. Eng. Manag, vol. 30, no. 3, pp. 140-155, 1983.

A. Ishizaka and M. Lusti, “An intelligent tutoring system for AHP,” Proceedings of the 9th international conference on operational research. University of Osijek, Croatia, pp. 215-223, 2003.

E. Zavadskas and A. Kaklauskas, Multicriteria evaluation of building, Technika Vilnius, 1996.

P. Chatterjee, V. Manikrao and S. Chakraborty, “Materials selection using complex proportional assessment and evaluation of mixed data methods,” Mater Design, vol. 32, pp. 851-860, 2011.

D.J Smith, C.A. Graciano, P. Teixeira, G. Martínez and A. Pertuz, “Energy absorption characteristics of coiled expanded metal tubes under axial compression,” Latin American Journal of Solids and Structures, vol. 13, no. 16, pp. 3145-3160, 2016.