Vol. 17 Núm. 1 (2018): Revista UIS Ingenierías
Artículos

Posibilidades de usar la ceniza de cascarilla de arroz como reforzante en el sector de polímeros – una revisión

Natalia Cardona Uribe
Universidad Pontificia Bolivariana
Cindy Arenas Echeverry
Universidad Pontificia Bolivariana
Maryluz Betancur Velez
Universidad Pontificia Bolivariana
Biografía
Leyla Jaramillo
Instituto Tecnológico Metropolitano
Juan Martinez
Universidad Pontificia Bolivariana

Publicado 2018-01-09

Palabras clave

  • Carga reforzante,
  • caucho,
  • ceniza de cascarilla de arroz,
  • sílice,
  • termoplásticos

Cómo citar

Cardona Uribe, N., Arenas Echeverry, C., Betancur Velez, M., Jaramillo, L., & Martinez, J. (2018). Posibilidades de usar la ceniza de cascarilla de arroz como reforzante en el sector de polímeros – una revisión. Revista UIS Ingenierías, 17(1), 127–142. https://doi.org/10.18273/revuin.v17n1-2018012

Resumen

Este trabajo presenta una revisión de las rutas de obtención de sílice sintética, clasificadas como de tipo térmico (también conocido como pirogénico) y líquido, las cuales dan lugar a diferentes referencias con diversas propiedades dependiendo, no solo de las condiciones del proceso sino también de las características de la materia prima. Con base en lo anterior, se hace un símil con la ceniza cascarilla de arroz (CCA) obtenida a partir de la combustión de la cascarilla de arroz, y se resaltan las principales propiedades físico-químicas para su utilización como reforzante en el sector de polímeros. En este sentido, este trabajo muestra una amplia revisión de la composición química, área superficial, estructura molecular y tamaño de partículas de diferentes CCA encontradas en la literatura. Finalmente, se describe el desempeño mecánico de materiales termoplásticos y elastómeros reforzados con CCA reportados en la literatura y comparados con compuestos reforzados con algunas sílices comerciales. 

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

FAOSTAT, “Cultivos,” 2017. [Online]. Available:https://goo.gl/h8SdbK.

FAO, “Rice market monitor,” vol. XX, no. 1, p. 38, 2017.

FAO, “Rice market monitor,” vol. XX, no. 3, pp. 32,2017.

DANE, “4° Censo Nacional Arrocero,” Bogotá D.C,2017.

J. Varón Cemargo, “Diseño, construcción y puesta a punto de un prototipo de quemador para la combustión continua y eficiente de la cascarilla de arroz,” El Hombre y la Máquina, no. 25, pp. 128–135, 2005.

I. J. Fernandes, D. Calheiro, A. G. Kieling, C. A. M.M. Moraes, T. L. A. C. A. C. Rocha, F. A. Brehm, and R. C. E. E. Modolo, “Characterization of rice husk ash produced using different biomass combustion techniques for energy,” Fuel, vol. 165, pp. 351–359, Feb. 2016.

J. S. Lim, Z. Abdul Manan, S. R. Wan Alwi, and H. Hashim, “A review on utilisation of biomass from rice industry as a source of renewable energy,” Renew. Sustain. Energy Rev., vol. 16, no. 5, pp. 3084–3094,
2012.

K. G. Mansaray and A. E. Ghaly, “Thermal degradation of rice husks in nitrogen atmosphere,” Bioresour. Technol., vol. 65, pp. 13–20, 1998.

M. J. Antal, S. G. Allen, X. Dai, B. Shimizu, M. S. Tam, and M. Grønli, “Attainment of the theoretical yield of carbon from biomass,” Ind. Eng. Chem. Res., vol. 39, pp. 4024–4031, 2000.

P. T. Williams and N. Nugranad, “Comparison of products from the pyrolysis and catalytic pyrolysis of rice husks,” Energy, vol. 25, pp. 493–513, 2000.

D. Quiceno and M. Mosquera, “Alternativas tecnológicas para el uso de la cascarilla de arroz como combustible,” Universidad Autónoma de Oriente, Santiago de Cali, 2010.

M. Pizano, “Sustratos,” in Floricultura y Medio Ambiente. Producción de Flores sin Bromuro de Metilo, PNUMA, Ed. 2001, pp. 81–92.

FAO y Ministerio de Agricultura y Ganadería, “Elaboración y uso del bocashi,” El Salvador: FAO, 2011, p. 12.

M. R. . Gidde and A. P. Jivani, “Waste to wealth - potential of rice husk in India a literature review,” Proc. Int. Conf. Clean. Technol. Environ. Manag., pp. 586–590, 2007.

L. N. Lacayo, “Cascarilla de arroz como suplemento alimenticio,” LA PRENSA. Jul-2001.

K. R. Bhattacharya and S. Zakiuddin Ali, “Rice Husk and its utilisation,” in Introduction to Rice-grain Technology, New Delhi: Woodjead Publishing India Pvt. Ltd, 2015, pp. 246–264.

D. F. Hidalgo, “Más ganancias en cerdos con aserrín y cascarilla de arroz.,” La Patría. Manizales-Colombia, 2013.

World Society for Animal Protection (WSPA), “Los beneficios de la cama profunda generan bienestar a los cerdos y sostenibilidad económica y ambiental.” Ubaque-Colombia, p. 4, 2010.

V. F. Perdomo, “Laminas De Aglomerado De Cascarilla De Arroz,” Incubar Huila. Huila-Colombia, 2010.

S. L. Lim, T. Y. Wu, E. Y. S. Sim, P. N. Lim, and C. Clarke, “Biotransformation of rice husk into organic fertilizer through vermicomposting,” Ecol. Eng., vol. 41, pp. 60–64, 2012.

R. Pode, B. Diouf, and G. Pode, “Sustainable rural electrification using rice husk biomass energy: a case study of Cambodia,” Renew. Sustain. Energy Rev., vol. 44, pp. 530–542, 2015.

F. Vitali, S. Parmigiani, M. Vaccari, and C. Collivignarelli, “Agricultural waste as household fuel: Techno-economic assessment of a new rice-husk cookstove for developing countries,” Waste Manag., vol. 33, pp. 2762–2770, 2013.

O. Garcia, M. Hernandez, J. Gonzalez, and H. J. Pava, “Formulación y evaluación del programa de producción más limpia en arroz Diana del Tolima,” Universidad de la Sabana. 2009.

M. Martínez B, “Silicio,” in Materiales y materias primas, 2011.

T. Madhiyanon, A. Lapirattanakun, P. Sathitruangsak, and S. Soponronnarit, “A novel cyclonic fluidized-bed combustor (ψ-FBC): Combustion and thermal efficiency, temperature distributions, combustion intensity, and emission of pollutants,” Combust. Flame, vol. 146, no. 1–2, pp. 232–245, Jul. 2006.

G. Chen, G. Du, W. Ma, B. Yan, Z. Wang, and W. Gao, “Production of amorphous rice husk ash in a 500kW fluidized bed combustor,” Fuel, vol. 144, pp. 214–221, Mar. 2015.

L. Armesto, A. Bahillo, K. Veijonen, A. Cabanillas, and J. Otero, “Combustion behaviour of rice husk in a bubbling fluidised bed,” Biomass and Bioenergy, vol. 23, no. 3, pp. 171–179, Sep. 2002.

N. Soltani, A. Bahrami, M. I. Pech-Canul, and L. A. González, “Review on the physicochemical treatments of rice husk for production of advanced materials,” Chem. Eng. J., vol. 264, pp. 899–935, 2015.

D. G. Nair, A. Fraaij, a. a K. Klaassen, and a. P. M. Kentgens, “A structural investigation relating to the pozzolanic activity of rice husk ashes,” Cem. Concr. Res., vol. 38, pp. 861–869, 2008.

R. L. Day, “Pozzolans for use in low-cost Housing,” Ottawa: International Development Research Centre, 1990, pp. 8–104.

Asia BioBusiness Pte Ltd, “Potential World Markets for Innovative Rice Businesses in Thailand Final Report,” in Intellectual Property, Singapore, 2006, pp. 4–33.

F. Cerezo, “Goodyear usará cáscara de arroz para hacer ruedas,” EL MUNDO. Madrid, 2014.

L. Sun and K. Gong, “Silicon-Based materials from rice husks and their applications,” Ind. Eng. Chem. Res., vol. 40, pp. 5861–5877, 2001.

H. S. Kim, H. S. Yang, H. J. Kim, and H. J. Park, “Thermogravimetric analysis of rice husk flour filled thermoplastic polymer composites,” J. Therm. Anal. Calorim., vol. 76, no. 2, pp. 395–404, 2004.

A. P. Vasco and M. V Betancur, “Estudio de la cinética de adsorción de índigo carmín en piezas abrasivas,” Rev. Investig. Apl., vol. 8, pp. 131–139, 2014.

R. Saidur, E. a. Abdelaziz, A. Demirbas, M. S. Hossain, and S. Mekhilef, “A review on biomass as a fuel for boilers,” Renew. Sustain. Energy Rev., vol. 15, pp. 2262–2289, 2011.

J. D. Martínez, T. Pineda, J. P. López, and M. Betancur, “Assessment of the rice husk lean-combustion in a bubbling fluidized bed for the production of amorphous silica-rich ash,” Energy, vol. 36, no. 6, pp. 3846–3854, 2011.

M. Nehdi, J. Duquette, and A. El Damatty, “Performance of rice husk ash produced using a new technology as a mineral admixture in concrete,” Cem. Concr. Res., vol. 33, no. 8, pp. 1203–1210, Aug. 2003.

R. A. Bakar, R. Yahya, and S. N. Gan, “Production of High Purity Amorphous Silica from Rice Husk,” Procedia Chem., vol. 19, pp. 189–195, 2016.

M. Rozainee, S. P. Ngo, A. A. Salema, and K. G. Tan, “Fluidized bed combustion of rice husk to produce amorphous siliceous ash,” Energy Sustain. Dev., vol. 12, no. 1, pp. 33–42, 2008.

I. Valchev, V. Lasheva, T. Tzolov, and N. Josifov, “Silica Products From Rice Hulls,” J. Univ. Chem. Technol. Metall., vol. 44, no. 3, pp. 257–261, 2009.

K. Rohatgi, S. V Prasad, and P. K. Rohatgi, “Release of silica-rich particles from rice husk by microbial fermentation,” J. Mater. Sci. Lett., vol. 6, no. 7, pp. 829–831, 1987.

S. K. Wason, “Synthetic silicas,” in Handbook of fillers for plastics, Springer Science & Business Media, 1987, pp. 165–180.

E. F. Vansant, P. Van Der Voort, and K. C. Vrancken, “Chapter 1 Silica: preparation and properties,” Stud. Surf. Sci. Catal., vol. 93, pp. 3–30, 1995.

O. W. Flörke, H. A. Graetsch, F. Brunk, L. Benda, S. Paschen, H. E. Bergna, W. O. Roberts, W. A. Welsh, C. Libanati, M. Ettlinger, D. Kerner, M. Maier, W. Meon, R. Schmoll, H. Gies, and D. Schiffmann, “Silica,” in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 2000, pp. 421–507.

W. A. Patrick, “Silica gel and process of making same.,” US1297724 A, 18-Mar-1919.

P. A. Ciullo, Industrial minerals and their uses: a handbook and formulary. William Andrew, 1996.

P. A. Ciullo, N. Hewitt, P. A. Ciullo, and N. Hewitt, “COMPOUNDING MATERIALS,” in The Rubber Formulary, Elsevier, 1999, pp. 4–49.

I. Franta, “CHAPTER 5 – Reclaimed rubbers,” in Studies in Polymer Science, vol. 1, 1989, pp. 300–324.

Evonik Industries AG, “A + Outperforming the standards. Reinforzing filler for Rubber industry,” 2016.

Wacker Chemie AG, “HDK® PYROGENIC SILICA,” 2017. [Online]. Available: www.wacker.com. [Accessed: 20-Apr-2017].

Evonik Industries AG, “AEROSIL fumed silica,” 2010. [Online]. Available: http://www.aerosil.com. [Accessed: 18-Apr-2017].

Evonik Industries AG, “Highly dispersible silica,” 2010. [Online]. Available: http://ultrasil.evonik.com. [Accessed: 18-Apr-2017].

PPG Industries Inc., “PPG Precipitated Silica for Industrial Rubber Applications,” 2014. [Online]. Available: https://goo.gl/DNfTRW. [Accessed: 05-May-2016].

Glassven, “RUBERSIL.” [Online]. Available: http://www.glassven.com. [Accessed: 12-Dec-2016].

Cabot, “Silicone rubbers,” 2017. [Online]. Available: http://www.cabotcorp.com/.

Huber Corporation, “Huber precipitated silica for rubber applications,” 2016. [Online]. Available: www.hubermaterials.com. [Accessed: 19-Apr-2017].

A. A. A. Abuelnuor, M. A. Wahid, S. E. Hosseini, A. Saat, K. M. Saqr, H. H. Sait, and M. Osman, “Characteristics of biomass in flameless combustion: A review,” Renew. Sustain. Energy Rev., vol. 33, pp. 363–370, 2014.

The Japan Institue of Energy, “Thermochemical conversion of biomass,” in The Asian Biomass Handbookandbook, S. Yokoyama, Ed. 2008, pp. 94–116.

S. K. Chopra, S. C. Ahluwalis, and S. Laxmi, “Technology and manufacture of rice-husk ash masonry (RHAM) cement,” in Proceedings of ESCAP/ RCTT Workshop on Rice-Husk Ash Cement, 1981.

M. A. Hamad and I. A. Khattab, “Effect of the combustion process on the structure of rice hull silica,” Thermochim. Acta, vol. 48, no. 3, pp. 343–349, 1981.

H. P. Boehm, “Chemical Identification of Surface Groups,” Adv. Catal., vol. 16, pp. 179–274, 1966.

J. Alvarez, G. Lopez, M. Amutio, J. Bilbao, and M. Olazar, “Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor,” Fuel, vol. 128, pp. 162–169, Jul. 2014.

I. A. Rahman and F. L. Riley, “The control of morphology in silicon nitride powder prepared from rice husk,” J. Eur. Ceram. Soc., vol. 5, no. 1, pp. 11–22, Jan. 1989.

X. Zhang, S. Zhang, H. Yang, J. Shao, Y. Chen, Y. Feng, X. Wang, and H. Chen, “Effects of hydrofluoric acid pre-deashing of rice husk on physicochemical properties and CO2 adsorption performance of nitrogen-enriched biochar,” Energy, vol. 91, pp. 903–910, Nov. 2015.

T. K. Naiya, A. K. Bhattacharya, S. Mandal, and S. K. Das, “The sorption of lead(II) ions on rice husk ash.,” J. Hazard. Mater., vol. 163, no. 2–3, pp. 1254–64, Apr. 2009.

A. Behnood, M. Modiri Gharehveran, F. Gozali Asl, and M. Ameri, “Effects of copper slag and recycled concrete aggregate on the properties of CIR mixes with bitumen emulsion, rice husk ash, Portland cement and fly ash,” Constr. Build. Mater., vol. 96, pp. 172–180, Oct. 2015.

K. K. Alaneme and K. O. Sanusi, “Microstructural characteristics, mechanical and wear behaviour of aluminium matrix hybrid composites reinforced with alumina, rice husk ash and graphite,” Eng. Sci. Technol. an Int. J., vol. 18, no. 3, pp. 416–422, Sep. 2015.

C. Santasnachok, W. Kurniawan, and H. Hinode, “The use of synthesized zeolites from power plant rice husk ash obtained from Thailand as adsorbent for cadmium contamination removal from zinc mining,” J. Environ. Chem. Eng., vol. 3, no. 3, pp. 2115–2126, Sep. 2015.

W. Xu, Y. T. Lo, D. Ouyang, S. A. Memon, F. Xing, W. Wang, and X. Yuan, “Effect of rice husk ash fineness on porosity and hydration reaction of blended cement paste,” Constr. Build. Mater., vol. 89, pp. 90–101, Aug. 2015.

F. Bondioli, F. Andreola, L. Barbieri, T. Manfredini, and A. M. Ferrari, “Effect of rice husk ash (RHA) in the synthesis of (Pr,Zr)SiO4 ceramic pigment,” J. Eur. Ceram. Soc., vol. 27, no. 12, pp. 3483–3488, Jan. 2007.

B. . Jenkins, L. . Baxter, and T. . Miles, “Combustion properties of biomass,” Fuel Process. Technol., vol. 54, no. 1–3, pp. 17–46, Mar. 1998.

H. T. Le and H.-M. Ludwig, “Effect of rice husk ash and other mineral admixtures on properties of self-compacting high performance concrete,” Mater. Des., vol. 89, pp. 156–166, Jan. 2016.

K. Ganesan, K. Rajagopal, and K. Thangavel, “Rice husk ash blended cement: Assessment of optimal level of replacement for strength and permeability properties of concrete,” Constr. Build. Mater., vol. 22, no. 8, pp. 1675–1683, Aug. 2008.

Z. A. M. Ishak and A. A. Bakar, “An investigation on the potential of rice husk ash as fillers for epoxidized natural rubber (ENR),” Eur. Polym. J., vol. 31, no. 3, pp. 259–269, Mar. 1995.

H. Ismail, M. . Nasaruddin, and H. . Rozman, “The effect of multifunctional additive in white rice husk ash filled natural rubber compounds,” Eur. Polym. J., vol. 35, no. 8, pp. 1429–1437, Aug. 1999.

S. Sankar, S. K. Sharma, N. Kaur, B. Lee, D. Y. Kim, S. Lee, and H. Jung, “Biogenerated silica nanoparticles synthesized from sticky, red, and brown rice husk ashes by a chemical method,” Ceram. Int., vol. 42, no. 4, pp. 4875–4885, 2016.

A. Kumar, S. Singha, D. Dasgupta, S. Datta, and T. Mandal, “Simultaneous recovery of silica and treatment of rice mill wastewater using rice husk ash: An economic approach,” Ecol. Eng., vol. 84, pp. 29–37, 2015.

D. R. Paul and L. M. Robeson, “Polymer nanotechnology: Nanocomposites,” in Polymer, vol. 49, no. 15, 2008, pp. 3187–3204.

J. C. Posada-correa, L. Y. Jaramillo-zapata, P. A. Villegas-bolaños, L. A. García, and C. A. Vargas-isaza, “Estudio comparativo de negro de humo y alúmina como cargas reforzantes en mezclas de caucho natural,” Rev. la Fac. Ing. Fis., vol. 13, no. 2, pp. 59–67, 2014.

H. M. Da Costa, L. L. Y. Visconte, R. C. R. Nunes, and C. R. G. Furtado, “Rice-husk-ash-filled natural rubber. II. Partial replacement of commercial fillers and the effect on the vulcanization process,” J. Appl. Polym. Sci., vol. 87, no. 9, pp. 1405–1413, Feb. 2003.

H. M. Da Costa, L. L. Y. Visconte, R. C. R. Nunes, and C. R. G. Furtado, “Rice husk ash filled natural rubber. I. Overall rate constant determination for the vulcanization process from rheometric data,” J. Appl. Polym. Sci., vol. 87, no. 8, pp. 1194–1203, Feb. 2003.

H. M. Da Costa, L. L. Y. Visconte, R. C. R. Nunes, and C. R. G. Furtado, “Mechanical and dynamic mechanical properties of rice husk ash-filled natural rubber compounds,” J. Appl. Polym. Sci., vol. 83, no. 11, pp. 2331–2346, Mar. 2002.

M. Y. A. Fuad, Z. Ismail, M. S. Mansor, Z. a. M. Ishak, and a. K. M. Omar, “Mechanical Properties of Rice Husk Ash/Polypropylene Composites.,” Polym. J., vol. 27, pp. 1002–1015, 1995.

H. Ismail, L. Mega, and H. P. S. Abdul Khalil, “Effect of a silane coupling agent on the properties of white rice husk ash-polypropylene/natural rubber composites,” Polym. Int., vol. 50, no. 5, pp. 606–611, 2001.

H. E. Haxo and P. K. Mehta, “Ground Rice-Hull Ash as a Filler for Rubber,” in Rubber Chemistry and Technology, vol. 48, no. 2, California: Rubber Division, ACS, 1975, pp. 271–288.

D. C. Edwards, “Polymer-filler interactions in rubber reinforcement,” J. Mater. Sci., vol. 25, no. 10, pp. 4175–4185, 1990.

D. Nwabunma, “Overview of Polyolefin Composites,” in Polyolefin Composites, John Wiley & Sons, Inc., 2007, pp. 1–28.

Gelest Inc., “Silane Coupling Agents: Connecting Across Boundaries,” 2014.

R. Pfaendner, “Nanocomposites: Industrial opportunity or challenge?,” Polym. Degrad. Stab., vol. 95, no. 3, pp. 369–373, Mar. 2010.

S. F. Thames and K. G. Panjnani, “Organosilane polymer chemistry: A review,” J. Inorg. Organomet. Polym., vol. 6, no. 2, pp. 59–94, 1996.

M. Y. Ahmad Fuad, R. SHIKOR, Z. A. Mohd Ishak, and A. K. Mohd Omar, “Rice husk ash as filler in polypropylene: Effect of wax and silane coupling agents,” Plast. rubber Compos. Process. Appl., vol. 21, no. 4, pp. 225–235, 1994.

E. P. Ayswarya, K. F. Vidya Francis, V. S. Renju, and E. T. Thachil, “Rice husk ash – A valuable reinforcement for high density polyethylene,” Mater. Des., vol. 41, pp. 1–7, Oct. 2012.

L. E. Nielsen, “Elastic moduli,” in Mechanical properties of polymers and composites, New York: Mercel Dekker, 1974, pp. 405, 413.

S. Siriwardena, H. Ismail, and U. S. Ishiaku, “Water absorption behavior and its effect on tensile properties of ethylene-propylene-diene-terpolymer/polypropylene/filler ternary composites: A preliminary study,” Polym. - Plast. Technol. Eng., vol. 41, no. 3, pp. 419–433, 2002.

S. Chandrasekhar, K. G. Satyanarayana, P. N. Pramada, P. Raghavan, and N. T. Gupta, “Review Processing, properties and applications of reactive silica from rice husk—an overview,” J. Mater. Sci., vol. 38, no. 15, pp. 3159–3168, 2003.

A. Dorigato and A. Pegoretti, “Fracture behaviour of linear low density polyethylene – fumed silica nanocomposites,” Eng. Fract. Mech., vol. 79, pp. 213–224, Jan. 2012.

D. M. Panaitescu, Z. Vuluga, C. Radovici, and C. Nicolae, “Morphological investigation of PP/nanosilica composites containing SEBS,” Polym. Test., vol. 31, no. 2, pp. 355–365, Apr. 2012.

C. Wu, M. Zhang, M. Rong, and K. Friedrich, “Silica nanoparticles filled polypropylene: effects of particle surface treatment, matrix ductility and particle species on mechanical performance of the composites,” Compos. Sci. Technol., vol. 65, no. 3–4, pp. 635–645, Mar. 2005.

K. A. Iyer and J. M. Torkelson, “Novel, synergistic composites of polypropylene and rice husk ash: Sustainable resource hybrids prepared by solid-state shear pulverization,” Polym. Compos., vol. 34, no. 7, pp. 1211–1221, Jul. 2013.

H. M. Da Costa, L. L. Y. Visconte, R. C. R. Nunes, and C. R. G. Furtado, “The effect of coupling agent and chemical treatment on rice husk ash‐filled natural rubber composites,” J. Appl. Polym. Sci., vol. 76, no. 7, pp. 1019–1027, 2000.

H. Ismail, M. . Nasaruddin, and U. . Ishiaku, “White rice husk ash filled natural rubber compounds: the effect of multifunctional additive and silane coupling agents,” Polym. Test., vol. 18, no. 4, pp. 287–298, Jun. 1999.

W. Arayapranee, N. Na-Ranong, and G. L. Rempel, “Application of rice husk ash as fillers in the natural rubber industry,” J. Appl. Polym. Sci., vol. 98, no. 1, pp. 34–41, Oct. 2005.

F. Yatsuyanagi, N. Suzuki, M. Ito, and H. Kaidou, “Effects of Surface Chemistry of Silica Particles on the Mechanical Properties of Silica Filled Styrene-Butadiene Rubber Systems,” Polym. J., vol. 34, no. 5, pp. 332–339, 2002.

S. J., O. S., and I. M., “Effects of silanol group on the hybridization of rubber and silica,” Kobunshi ronbunshu, vol. 57, no. 6, pp. 356–362, 2000.