Diseño de dispositivo mecánico para determinar el torque de inserción de mini implantes dentales

  • Javier Roldán-Mckinley Universidad del Atlántico http://orcid.org/0000-0003-1444-6460
  • Karolan Polo-Cano Universidad del Atlántico
  • Carolina Rodríguez-Heilbron Universidad del Atlántico

Resumen

Los mini implantes dentales son tornillo que se insertan temporalmente en el maxilar de un paciente como anclaje para generar una fuerza y mover una pieza dental. Este artículo presenta el diseño de un dispositivo para la determinación del torque de inserción de mini implantes dentales autoperforantes en una probeta de hueso porcino. El mecanismo propuesto no requiere de accionamiento eléctrico. La entrada de potencia se da mediante el torque resultante del efecto del peso actuando sobre una polea a través de una cuerda. El dispositivo está compuesto por tres transmisiones para la transformación de movimiento: transmisión por polea, engranajes cónicos de dientes rectos, y un mecanismo piñón-cremallera. Este último permite el avance longitudinal al tiempo que se da la rotación de la herramienta, haciendo posible el rompimiento del hueso e inserción del mini implante. A partir de la fuerza de inserción y de la velocidad recomendada para la transmisión piñón-cremallera, y teniendo en cuenta la eficiencia de cada estación de transmisión, se estableció la potencia de accionamiento del dispositivo. Para el caso de estudio se diseñó un portaherramientas adecuado para mini implante marca HUBIT Co x 1.4mm. Se consideraron tanto el diseño por fatiga como el diseño estático para el dimensionamiento de los ejes. El análisis de movimiento realizado permitió verificar que no existe interferencia entre ninguna de las piezas en contacto, permitiendo el avance del tornillo mediante la inclusión de un cuñero deslizante.

Palabras clave: torque de inserción, mini implantes, método de elementos finitos, modelo CAD

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] O. Dilek, E. Tezulas, M. Dincel, “Required minimum primary stability and torque values for immediate loading of mini dental implants: an experimental study in nonviable bovine femoral bone”, Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod., vol. 105, no. 2, pp. 20-27, Feb. 2008, doi: 10.1016/j.tripleo.2007.10.003

[2] R. Meursinge, L. Ronchi, L. Ladu, F. van Etten-Jamaludin, S. Bipat, “Insertion torque and success of orthodontic mini-implants: a systematic review”, Am. J. Orthod. Dentofac. Orthop., vol. 142, no. 5, pp. 596-614, 2012, doi: 10.1016/j.ajodo.2012.06.013

[3] G. Serra, et al., “Sequential bone healing of immediately loaded mini-implants”, Am. J. Orthod. Dentofac. Orthop., vol. 134, no. 1, pp. 44-52, 2008, doi: 10.1016/j.ajodo.2006.09.057

[4] MDI Mini Dental Implants, 3M ESPE Product Catalog, 2016 [En línea]. Disponible en: https://multimedia.3m.com/mws/media/669937O/3m-espe-mdi-catalog-us.pdf

[5] S. Baumgaertel, M. Razavi, M. Hans, “Mini-implant anchorage for the orthodontic practitioner”, Am. J. Orthod. Dentofac. Orthop., vol. 133, no. 4, pp. 621-627, May 2008, doi: 10.1016/j.ajodo.2007.03.022

[6] K. Singh, D. Kumar, R. Jaiswal, A. Bansal, “Temporary anchorage devices - Mini-implants”, Natl J Maxillofac Surg., vol.1, no. 1, pp. 30-34, 2010, doi: 10.4103/0975-5950.69160

[7] D. Ballard, et al., “Orthodontics & Mini-screws”, Australian Society of Orthodontists, Sydney, 2007 [En línea]. Disponible en: https://www.aso.org.au/sites/default/files/uploaded-content/field_f_content_file/orthodontics_and_mini-screws.pdf.

[8] L. Jiang, L. Kong, T. Li, Z. Gu, R. Hou, Y. Duan, “Optimal selections of orthodontic mini-implant diameter and length by biomechanical consideration: A three-dimensional finite element analysis”, Adv. Eng. Softw., vol. 40, no. 11, pp. 1124-1130, 2009, doi: 10.1016/j.advengsoft.2009.05.008

[9] T. Bardyn, P. Gédet, W. Hallermann, P. Büchler, “Prediction of dental implant torque with a fast and automatic finite element analysis: a pilot study”, Oral Surgery, Oral Med. Oral Pathol. Oral Radiol. Endodontology, vol. 109, no. 4, pp. 594-603, 2010, doi: 10.1016/j.tripleo.2009.11.010

[10] M. Pithon, M. Nojima, L.Nojima, “In vitro evaluation of insertion and removal torques of orthodontic mini-implants”, Int. J. Oral Maxillofac. Surg., vol. 40, no. 1, pp. 80-85, 2011, doi: 10.1016/j.ijom.2010.09.013

[11] E. Yugo, B. Suzuki, “Placement and removal torque values of orthodontic miniscrew implants”, Am. J. Orthod. Dentofac. Orthop., vol. 139, no. 5, pp. 669-678, 2011, doi: 10.1016/j.ajodo.2010.11.017

[12] T. Martins, M. Andrade, F. Bezerra, M. Costa, “Ancoragem esquelética em Ortodontia com miniimplantes”, Rev. Dent. Press Ortod. e Ortop. Facial, vol. 11, no. 4, pp. 126-156, 2006, doi: 10.1590/s1415-54192006000400014

[13] Y. Tseng, C. Hsieh, C. Chen, Y. Shen, I. Huang, C. Chen, “The application of mini-implants for orthodontic anchorage”, Int. J. Oral Maxillofac. Surg., vol. 35, no. 8, pp. 704-707, 2006, doi: 10.1016/j.ijom.2006.02.018

[14] L. Péreza, Y. Garmas, “Mini implantes, una opción para el anclaje en Ortodoncia”, Gaceta Médica Espirituana, vol. 13, no. 3, 2011.

[15] R. Tachibana, M. Motoyoshi, A. Shinohara, T. Shigeeda, N. Shimizu, “Safe placement techniques for self-drilling orthodontic mini-implants”, Int. J. Oral Maxillofac. Surg., vol. 41, no. 11, pp. 1439-1444, 2012, doi: 10.1016/j.ijom.2012.05.031

[16] B. Wilmes, D. Drescher, “Impact of bone quality, implant type, and implantation site preparation on insertion torques of mini-implants used for orthodontic anchorage”, Int. J. Oral Maxillofac. Surg., vol. 40, no. 7, pp. 697-703, 2011, doi: 10.1016/j.ijom.2010.08.008

[17] M. Motoyoshi, M. Inaba, A. Ono, S. Ueno, N. Shimizu, “The effect of cortical bone thickness on the stability of orthodontic mini-implants and on the stress distribution in surrounding bone”, Int. J. Oral Maxillofac. Surg., vol. 38, no. 1, pp. 13-18, 2009, doi: 10.1016/j.ijom.2008.09.006

[18] K. Kimak, O. Motohiro, O. Guariza, E. Souza, L. Teixeira, H. Maruo, “Insertional torque and axial pull-out strength of mini-implants in mandibles of dogs”, Am. J. Orthod. Dentofac. Orthop., vol. 133, no. 6, pp. 79015–79022, 2007, doi: 10.1016/j.ajodo.2007.12.020

[19] J. Okazaki, Y. Komasa, D. Sakai, A. Kamada, T. Ikeo, I. Toda, F. Suwa, M. Inoue, T. Etoh, “A torque removal study on the primary stability of orthodontic titanium screw mini-implants in the cortical bone of dog femurs”, Int. J. Oral Maxillofac. Surg., vol. 37, no. 7, pp. 647-650, 2008, doi: 10.1016/j.ijom.2008.04.007

[20] S. Wu, C. Lee, P. Fu, S. Lin, “The effects of flute shape and thread profile on the insertion torque and primary stability of dental implants”, Med. Eng. Phys., vol. 34, no. 7, pp. 797-805, 2012, doi: 10.1016/j.medengphy.2011.09.021

[21] R. Mischkowski, P. Kneuertz, B. Florvaag, F. Lazar, J. Koebke, J. E. Zöller, “Biomechanical comparison of four different miniscrew types for skeletal anchorage in the mandibulo-maxillary area”, Int. J. Oral Maxillofac. Surg., vol. 37, no. 10, pp. 948-954, 2008, doi: 10.1016/j.ijom.2008.07.017

[22] D. W. Braudaway, “The costs of calibration”, IEEE Trans. Instrum. Meas., vol. 52, no. 3, pp. 738-741, 2003, doi: 10.1109/TIM.2003.814704

[23] C. Ruetschi, D. Chenaux, “A medical instrument for torque control tightening threaded impant device and packaging of the same”, U.S. Patent 2020/0060791 A1, Feb. 27, 2020 [En línea]. Disponible en: https://patentimages.storage.googleapis.com/09/8b/99/a6254ac6813afb/US20200060791A1.pdf.

[24] N. Chernovol, “Dental implant, connecting screw and kit for implantation”, U.S. Patent 2020/0038147 A1, Feb. 6, 2020 [En línea]. Disponible en: https://patentimages.storage.googleapis.com/44/65/14/68faba6c24f7de/US20200038147A1.pdf.

[25] J. Johnson, E. Cook, “Driver tool and method of use”, U.S. Patent 10,569,391 B2, Feb. 25, 2020 [En línea]. Disponible en: https://patentimages.storage.googleapis.com/5e/a2/22/346ecb2147fe85/US10569391.pdf.

[26] I. Dorsam, et al., “Definition of a drilling protocol for mini dental implants in different bone qualities”, Annals of Anatomy - Anatomischer Anzeiger, vol. 231, pp. 151511, 2020, doi: 10.1016/j.aanat.2020.151511.

[27] M. Giri, K. Sabapathyb, B. Govindasamy, H. Rajamurugana, “Evaluation of insertion torque and surface integrity of zirconia-coated titanium mini screw implants”, J. of the World Federation of Orthodontists, vol. 9, no. 1, pp. 13-17, 2020, doi: 10.1016/j.ejwf.2020.01.002

[28] V. M. González Cabrera, Física Fundamental, México D.F., México: Editorial Progreso, 2004.

[29] J. Cegarra Sánchez, Metodología de la investigación científica y técnológica. Madrid, España: Ediciones Díaz de Santos, 2004.

[30] R. Hernández, C. Fernández, P. Baptista, Metodología de la investigación, 5ta. ed. México D.F.: McGraw Hill, 2010.

[31] M. Iijima, et al., “Torsional properties and microstructures of miniscrew implants”, American J. of Orthodontics and Dentofacial Orthopedics, vol. 134, no. 3, pp. 3331–3336, 2008, doi: 10.1016/j.ajodo.2008.03.012

[32] M. Motoyoshi, et al., “Recommended placement torque when tightening an orthodontic mini-implant”, Clinical Oral Implants Eesearch, vol. 17, no. 1, pp. 109-114, 2006.

[33] Forestadent, Orthoeasy Pin System Intrctions for use, warnings and precautions, Pforzheim, Alemania, 2015.

[34] 3M ESPE Technical Staff, Dentals mini implants, 3M ESPE MDI, 2013.

[35] Y. Su, B. Wilmes, R. Honscheid, D. Drescher. “Pre-drilling force and insertion torques during orthodontic mini-implant insertion in relation to root contact”, J. of Orofacial Orthopedics, vol. 69, pp. 51-58, 2008, doi: 10.1007/s00056-008-0726-5

[36] H. Müller, “Optimizing Operating Efficiency”, Gear Solutions, vol. 8, no. 87, pp. 32-34, 2010.

[37] R. L. Norton, Diseño de máquinas. Mexico D.F., México: Pearson Education, 2011.

[38] KOOM Thecnical Staff, Transmissions by pinion rack, Pinion Rack Manufacturer, 2016.

[39] Design Manual for Bevel Gears, ANSI-AGMA, D03, 2005.

[40] Rating the Pitting Resistance and Bending Strength of Generated Straight Bevel, Zerol Bevel and Spiral Bevel Gear Teeth, ANSI- AGMA, B97, 2003.

[41] R. Mott, Diseño de elementos de máquinas. México D.F.,México: Pearson Education, 2013

[42] R. Budynas, J. K. Nisbett, Diseño en Ingeniería de Shigley. México D.F., Mexico: McGraw-Hill Interamericana, 2008.

[43] W. Pilkey, D. Pilkey, Peterson´s stress concentration factors. New Jersey, USA: Jhon Wiley & Son, Inc., 2008.

[44] SKF Corporation, "Criterios de selección de rodamientos", Septiembre 2018.

[45] Rolling bearings-dynamic load ratings and rating life, ISO Std, 281, 2007.

[46] Weights of classes E1, E2, F1, F2, M1, M1–2, M2, M2–3 and M3 Part 1: Metrological and technical requirements, OIML, R 111-1, 2004.

[47] Cranes and Lifting Appliances Selection of Wire Ropes Part 1: General, ISO Std, 4308-1, 2008.

[48] Trenzacol, "Productos: Cuerdas nylon alta tenacidad", Septiembre 2018.

[49] Ruland Manufactring Co., Inc, "Rigid Couplings", Septiembre 2018 [En línea]. Disponible en: https://www.ruland.com/rigid-couplings.html.

[50] Hubit Medical Expo, “Miniimplante cónico H- series”, Marzo 2020. [En línea]. Disponible en: https://www.medicalexpo.es/prod/hubit-co-ltd/product-72746-801305.html.

[51] SolidWorks Simulation, "Ayuda de Solidworks: Simulation", Septiembre 2018 [En línea]. Disponible en: http://help.solidworks.com/2018/spanish/SolidWorks/SWHelp_List.html?id=4922de217c1a49eb8995bc329cb96d2b#Pg0
Publicado
2020-09-02

Artículos más leídos por el mismo autor(es)