Vol. 19 Núm. 1 (2020): Revista UIS Ingenierías
Artículos

Análisis comparativo de las propiedades mecánicas de geopolímeros que incorporan nanowhiskers de SiC y nanopartículas de TiO2

Madeleing Taborda-Barraza
Universidad Federal de Santa Catarina
Nagilla Huerb de Azevedo
Universidad Federal de Santa Catarina
Philippe Jean Paul Gleize
Universidad Federal de Santa Catarina
Natalia Prieto
Universidad Industrial de Santander

Publicado 2020-01-03

Palabras clave

  • geopolímeros,
  • nanomateriales,
  • resistencia mecánica

Cómo citar

Taborda-Barraza, M., de Azevedo, N. H., Gleize, P. J. P., & Prieto, N. (2020). Análisis comparativo de las propiedades mecánicas de geopolímeros que incorporan nanowhiskers de SiC y nanopartículas de TiO2. Revista UIS Ingenierías, 19(1), 95–102. https://doi.org/10.18273/revuin.v19n1-2020009

Resumen

Un geopolímero a base de metacaolin fue fabricado con 5 proporciones de dos nanomateriales diferentes. Por un lado, nanowhiskers de carburo de silicio y, por otro lado, nanopartículas de dióxido de titanio. Ambos fueron colocados en agua y recibieron energía ultrasónica para ser dispersados. Fueron analizadas los efectos sobre las propiedades mecánicas y la cinética de reacción. Comparados con la matriz de referencia, los resultados evidenciaron una tendencia al incremento de la resistencia a la flexión. Probablemente por la geometría de los nanowhiskers de SiC y el refinamiento de poros por las partículas de nano-TiO2. Las curvas de calorimetría mostraron que al incorporar nanopartículas de TiO2 se obtuvo una reducción del 92 % en el calor total, mientras que, los nanowhiskers de SiC produjeron una reducción del 25 % en el calor total.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] P. Duxson, J. L. Provis, G. C. Lukey, and J. S. Van Deventer, “The role of inorganic polymer technology in the development of green concrete?” Cement and Concrete Research, vol. 37, no. 12, pp. 1590–1597, 2007.

[2] E. A. S. Correia et al., “Compósitos de matriz geopolimérica reforçados com fibras vegetais de abacaxi e de sisal,” 2011.

[3] E. Rodríguez, R. M. de Gutiérrez, S. Bernal, and M. Gordillo, “Efecto de los módulos sio2/al2 o3 y na2 o/sio2 en las propiedades de sistemas geopoliméricos basados en un metacaolín,” Revista Facultad de Ingeniería, no. 49, pp. 30–41, 2009.

[4] M. Ohno and V. C. Li, “A feasibility study of strain hardening fiber reinforced fly ash-based geopolymer composites,” Construction and Building Materials, vol. 57, pp. 163–168, 2014.

[5] J. Van Jaarsveld, J. Van Deventer, and L. Lorenzen, “The potential use of geopolymeric materials to immobilise toxic metals: Part i. theory and applications,” Minerals engineering, vol. 10, no. 7, pp. 659–669, 1997.

[6] Z. Yunsheng, S. Wei, C. Qianli, and C. Lin, “Synthesis and heavy metal immobilization behaviors of slag based geopolymer,” Journal of hazardous materials, vol. 143, no. 1-2, pp. 206–213, 2007.

[7] Q. Li, Z. Sun, D. Tao, Y. Xu, P. Li, H. Cui, and J. Zhai, “Immobilization of simulated radionuclide 133cs+ by fly ash-based geopolymer,” Journal of hazardous materials, vol. 262, pp. 325– 331, 2013.

[8] M. E. Launey and R. O. Ritchie, “On the fracture toughness of advanced materials,” Advanced Materials, vol. 21, no. 20, pp. 2103–2110, 2009.

[9] N. Saheb, N. Qadir, M. Siddiqui, A. Arif, S. Akhtar, and N. AlAqeeli, “Characterization of nanoreinforcement dispersion in inorganic nanocomposites: A review,” Materials, vol. 7, no. 6, pp. 4148–4181, 2014.

[10] J. A. Hammell, The influence of matrix composition and reinforcement type on the properties of polysialate composites, 2000.

[11] A. S. Rahman, “Nanofiber reinforcement of a geopolymer matrix for improved composite materials mechanical performance,” Ph.D. dissertation, Colorado State University, 2015.

[12] P. D. L. Osório, “Concepção de um saferoom anti-tornado em betão geopolimérico,” Ph.D. dissertation, 2007. [13] S. Gómez, B. B. Ramón, and R. Guzman, “Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with e-glass fibers,” Revista UIS Ingenierías, vol. 17, no. 1, pp. 43–50, 2018.

[14] D. A. Sanes Lagares, “Influencia de microfibras de polipropileno y microsilice en la resistencia de concretos de 4000 y 3000 psi,” 2017.

[15] H. Assaedi, F. Shaikh, and I. M. Low, “Effect of nano-clay on mechanical and thermal properties of geopolymer,” Journal of Asian Ceramic Societies, vol. 4, no. 1, pp. 19–28, 2016.

[16] S. M. Abbasi, H. Ahmadi, G. Khalaj, and B. Ghasemi, “Microstructure and mechanical properties of a metakaolinite-based geopolymer nanocomposite reinforced with carbon nanotubes,” Ceramics International, vol. 42, no. 14, pp. 15 171–15 176, 2016.

[17] K. Gao, K.-L. Lin, D. Wang, C.-L. Hwang, B. L. A. Tuan, H.-S. Shiu, and T.-W. Cheng, “Effect of nano-sio2 on the alkali-activated characteristics of metakaolin-based geopolymers,” Construction and building materials, vol. 48, pp. 441–447, 2013.

[18] M. Saafi, K. Andrew, P. L. Tang, D. McGhon, S. Taylor, M. Rahman, S. Yang, and X. Zhou, “Multifunctional properties of carbon nanotube/fly ash geopolymeric nanocomposites,” Construction and Building Materials, vol. 49, pp. 46–55, 2013.

[19] H. M. M. Khater, “Physicomechanical properties of nano-silica effect on geopolymer composites,” Journal of Building Materials and Structures, vol. 3, no. 1, pp. 1–14, 2016.

[20] H. Khater and H. A. El Gawaad, “Characterization of alkali activated geopolymer mortar doped with mwcnt,” Construction and Building Materials, vol. 102, pp. 329–337, 2016.

[21] M. Sumesh, U. J. Alengaram, M. Z. Jumaat, K. H. Mo, and M. F. Alnahhal, “Incorporation of nano-materials in cement composite and geopolymer based paste and mortar–a review,” Construction and Building Materials, vol. 148, pp. 62–84, 2017.

[22] S. Parveen, S. Rana, and R. Fangueiro, “A review on nanomaterial dispersion, microstructure, and mechanical properties of carbon nanotube and nanofiber reinforced cementitious composites,” Journal of Nanomaterials, vol. 2013, p. 80, 2013.

[23] S. Mishra, A. Mishra, R. Krause, and B. Mamba, “Growth of silicon carbide nanorods from the hybrid of lignin and polysiloxane using sol-gel process and polymer blend technique,” Materials Letters, vol. 63, no. 28, pp. 2449–2451, 2009.

[24] M. Rincón-Joya, J. J. Barba-Ortega, and E. París, “Obtención de muestras de óxidos a bajo costo,” Revista UIS Ingenierías, vol. 18, no. 3, pp. 33–38, 2019.

[25] S. Meng, G.-Q. Jin, Y.-Y. Wang, and X.-Y. Guo, “Tailoring and application of sic nanowires in composites,” Materials Science and Engineering: A, vol. 527, no. 21-22, pp. 5761–5765, 2010.

[26] S. Akpinar, I. Kusoglu, O. Ertugrul, and K. Onel, “Silicon carbide particle reinforced mullite composite foams,” ceramics international, vol. 38, no. 8, pp. 6163–6169, 2012.

[27] M. V. Diamanti, M. Ormellese, and M. Pedeferri, “Characterization of photocatalytic and superhydrophilic properties of mortars containing titanium dioxide,” Cement and Concrete Research, vol. 38, no. 11, pp. 1349–1353, 2008.

[28] C. Cárdenas Ramírez et al., “Evaluación de las propiedades físicas y fotocatalíticas de cemento adicionado con nanopartículas de dióxido de titanio,” Ph.D. dissertation, Universidad Nacional de Colombia, Sede Medellín, 2012.

[29] T. Meng, Y. Yu, X. Qian, S. Zhan, and K. Qian, “Effect of nanotio2 on the mechanical properties of cement mortar,” Construction and Building Materials, vol. 29, pp. 241–245, 2012.

[30] C. A. Casagrande et al., “Estudo da incorporação de partículas de titânia em argamassas fotocatalíticas,” 2012.
[31] T. d. Rocha et al., “A influência da nano-tio2 em pastas geopoliméricas,” 2016.

[32] J. Leite et al., “A influência da vermiculita em argamassa geopolimérica com adição de nanotitânia,” 2017.

[33] L. Yang, Z. Jia, Y. Zhang, and J. Dai, “Effects of nano-tio2 on strength, shrinkage and microstructure of alkali activated slag pastes,” Cement and Concrete Composites, vol. 57, pp. 1–7, 2015.

[34] P. Duan, C. Yan, W. Luo, and W. Zhou, “Effects of adding nanotio2 on compressive strength, drying shrinkage, carbonation and microstructure of fluidized bed fly ash based geopolymer paste,” Construction and Building Materials, vol. 106, pp. 115–125, 2016.

[35] E. A. Llano Guerrero, “Síntesis y caracterización de cementos activados alcalinamente base metacaolín/escoria granulada de alto horno con adiciones de nanopartículas de tio2,” Ph.D. dissertation, Universidad Autónoma de Nuevo León, 2017.

[36] N. H. Azevedo and P. J. Gleize, “Effect of silicon carbide nanowhiskers on hydration and mechanical properties of a portland cement paste,” Construction and Building Materials, vol. 169, pp. 388–395, 2018.

[37] M. Taborda Barraza et al., “Desempenho mecânico de um compósito de matriz geopolimérica à base de metacaulim e nanobastões de carbeto de silício,” 2016.

[38] L. L. Coelho et al., “Incorporação de lantânio e óxido de grafeno para modular a fotoatividade em nanopartículas de tio2,” 2017.

[39] I. Bigno, F. Oliveira, F. SILVA, and C. Thaumaturgo, “Calor de reação de cimentos geopoliméricos,” in Congresso Brasileiro de cerâmica, 2005, pp. 1–5.

[40] H. Rahier, J. Wastiels, M. Biesemans, R. Willlem, G. Van Assche, and B. Van Mele, “Reaction mechanism, kinetics and high temperature transformations of geopolymers,” Journal of Materials Science, vol. 42, no. 9, pp. 2982–2996, 2007.

[41] B. Ma, H. Li, X. Li, J. Mei, and Y. Lv, “Influence of nano-tio2 on physical and hydration characteristics of fly ash–cement systems,” Construction and Building Materials, vol. 122, pp. 242– 253, 2016.

[42] B. Y. Lee and K. E. Kurtis, “Influence of tio2 nanoparticles on early c3s hydration,” Journal of the American Ceramic Society, vol. 93, no. 10, pp. 3399–3405, 2010.

[43] R. Zhang, X. Cheng, P. Hou, and Z. Ye, “Influences of nanotio2 on the properties of cement-based materials: Hydration and drying shrinkage,” Construction and Building Materials, vol. 81, pp. 35–41, 2015.

[44] J. Chen, S.-c. Kou, and C.-s. Poon, “Hydration and properties of nano-tio2 blended cement composites,” Cement and Concrete Composites, vol. 34, no. 5, pp. 642–649, 2012.

[45] J. Yuan, P. He, D. Jia, S. Yan, D. Cai, L. Xu, Z. Yang, X. Duan, S. Wang, and Y. Zhou, “Sic fiber reinforced geopolymer composites, part 1: Short sic fiber,” Ceramics International, vol. 42, no. 4, pp. 5345–5352, 2016.

[46] F.-P. Du, S.-S. Xie, F. Zhang, C.-Y. Tang, L. Chen, W.-C. Law, and C.-P. Tsui, “Microstructure and compressive properties of silicon carbide reinforced geopolymer,” Composites Part B: Engineering, vol. 105, pp. 93–100, 2016.

[47] T. Kantel and A. Slosarczyk, “Influence of silicon carbide and ´ electrocorundum on the thermal resistance of cement binders with granulated blast-furnace slag,” Procedia Engineering, vol. 172, pp. 497–504, 2017.

[48] A. Nazari and S. Riahi, “The effects of zinc dioxide nanoparticles on flexural strength of self-compacting concrete,” Composites Part B: Engineering, vol. 42, no. 2, pp. 167–175, 2011.

[49] R. Mueller, H. K. Kammler, K. Wegner, and S. E. Pratsinis, “Oh surface density of sio2 and tio2 by thermogravimetric analysis,” Langmuir, vol. 19, no. 1, pp. 160–165, 2003.