Vol. 19 No. 4 (2020): Revista UIS Ingenierías
Articles

The effects of graphed a stock indicator on a traditional control chart X and S: perspectives, analysis of the operability of the indicator and assignable causes to make decisions in the market

Javier Orlando Neira-Rueda
Universitat Politècnica de València
Andrés Carrión-García
Universitat Politècnica de València
Wilman Romero-Arenis
UNIMINUTO

Published 2020-09-07

Keywords

  • control charts,
  • stock exchange,
  • decision making,
  • economy

How to Cite

Neira-Rueda, J. O., Carrión-García, A., & Romero-Arenis, W. (2020). The effects of graphed a stock indicator on a traditional control chart X and S: perspectives, analysis of the operability of the indicator and assignable causes to make decisions in the market. Revista UIS Ingenierías, 19(4), 223–238. https://doi.org/10.18273/revuin.v19n4-2020019

Abstract

This article structures stock market indicators for that they can be analyzed using a traditional Shewhart process control chart. A graph widely used in the industry to control variables highly correlated with processes. These graphs seek to assign causes to possible changes in the normal behavior of the data. On the other hand, any attempt to obtain statistical points of view that help to make low-risk investment decisions is welcome, since an error in decision-making in the stock market can lead to a great economic loss for investors. This document shows the results of the analysis and the recommendations to build a Shewhart X and S control chart with stock market indicators, in order to define its benefits.

Downloads

Download data is not yet available.

References

[1] A. Dyhrberg, “Hedging capabilities of bitcoin. Is it the virtual gold?”, Finance Research Letters, vol. 16, pp. 139-144, 2016, doi: 10.1016/j.frl.2015.10.025

[2] V. Marano, P. Tashman, T. Kostova, “Escaping the iron cage: Liabilities of origin and CSR reporting of emerging market multinational enterprises”, Journal of International Business Studies, vol. 48, no. 3, pp. 286-408, 2017, doi: 10.1057/jibs.2016.17

[3]S. H. Cheng, W.S. Jian, “Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures”, Information Sciences, vol. 327, pp. 272-287, 2016, doi: 10.1016/j.ins.2015.08.024

[4]A. Maghyereh, B. Awartani, E. Bouri, “The directional volatility connectedness between crude oil and equity markets: New evidence from implied volatility indexes”, Energy Economics, vol. 57, pp. 78-93, 2016, doi: 10.1016/j.eneco.2016.04.010

[5] M. Lutfi, C. Nazwar, I. Muda, “Effects of investment opportunity set, company size and real activity manipulation of issuers in Indonesia Stock Exchange on stock price in Indonesia”, International Journal of Economic Research, vol. 13, no. 5, pp. 2147-2159, 2016.

[6] E. Fama, K. French, “The cross-section of expected stock returns”, Journal of Finance, vol. 47, no. 2, pp. 427-465, 1992, doi: 10.1111/j.1540-6261.1992.tb04398.x

[7] A. Lo, “Long-term memory in stock market prices”, Econometrica, vol. 59, no. 5, pp. 1259-1313, 1989, doi: 10.3386/w2984

[8] V. Shivajee, R. Singh, S. Rastogi, “Manufacturing conversion cost reduction using quality control tools and digitization of real-time data”, Journal of Cleaner Production, vol. 237, no. 10, pp. 117678, 2019, doi: 10.1016/j.jclepro.2019.117678

[9]E. Mitreva, S. Gjurevska, N. Taskov, y H. Gjorshevski, “Application of methods and techniques for free production in a company for manufacture of bread and bakery products”, Quality - Access to Success, vol. 20, no. 171, pp. 141-156, 2019.

[10] R. Aykroyd, V. Leiva, F. Ruggeri, “Recent developments of control charts, identification of big data sources and future trends of current research”, Technological Forecasting and Social Change, vol. 144, pp. 221-232, 2019, doi: 10.1016/j.techfore.2019.01.005

[11] A. Rath, G. Nayak, R. Jena, ”Design & control of low cost solar tree for optimizing a PV system”, International Journal of Recent Technology and Engineering, vol. 8, no. 2, pp. 5622-5626, 2019.

[12] L. Kang, S. Albin, “On-line monitoring when the process yields a linear profile”, Journal of Quality Technology, vol. 32, no. 4, pp. 418-426, 2000, doi: 10.1080/00224065.2000.11980027

[13] D. C. Mongomery, Introduction to Statistical Quality Control, 5th ed. USA: Jhon Wiley & Sons, 2005.

[14] H. Gutiérrez-Pulido, Control Estadistico de Calidad y Seis Sigma, 3 ed. Guanajuato: Mc Graw Hill, 2013.

[15] D. Peña, Fundamentos de Estadistica, Madrid: Alianza, 2005.

[16] Bolsa de Valores de Colombia, “Metodología para el Cálculo del Índice COLCAP”, Bogota, Colombia, 2018.

[17] Grupo Aval, “Portal financiero: Acciones y Valores”, [En línea]. Disponible en: https://www.grupoaval.com/wps/portal/grupo-aval/aval/portal-financiero

[18] Grupo Bancolombia, “Investigaciones económicas”, [En línea]. Disponible en: https://www.grupobancolombia.com/wps/portal/empresas/capital-inteligente/investigaciones-economicas

[19] W. Woodall, D. Montgomery , “Research Issues and Ideas in Statistical Process Control”, Journal of Quality Technology, vol. 31, no. 4, pp. 376-386, 1999, doi: 10.1080/00224065.1999.11979944

[20] S. Wold, M. Sjostrom, L. Eriksson, “PLS-regression: a basic tool of chemometrics”, Chemometrics and Intelligent Laboratory Systems, vol. 58, no. 58, pp. 109-130, 2001, doi: 10.1016/S0169-7439(01)00155-1

[21] M. Uluskan, “Analysis of Lean Six Sigma tools from a multidimensional perspective”, Total Quality Management and Business Excellence, vol. 30, pp. 1167-1188, 2019, doi: 10.1080/14783363.2017.1360134