Vol. 19 Núm. 3 (2020): Revista UIS Ingenierías
Artículos

Fabricación y análisis mecánico de compuestos de bambú Guadua angustifolia Kunth

Alexander Gaitán-Bermúdez
Universidad del Quindío
Gerardo Fonthal-Rivera
Universidad del Quindío

Publicado 2020-06-13

Palabras clave

  • Guadua angustifolia Kunth,
  • urea formaldehido,
  • pruebas fisicomecánicas,
  • absorción de agua,
  • termografía

Cómo citar

Gaitán-Bermúdez, A., & Fonthal-Rivera, G. (2020). Fabricación y análisis mecánico de compuestos de bambú Guadua angustifolia Kunth. Revista UIS Ingenierías, 19(3), 207–214. https://doi.org/10.18273/revuin.v19n3-2020019

Resumen

En esta investigación fueron fabricados compuestos de partículas de Guadua angustifolia Kunth con tamaños de 500 µm y 300 µm con matriz polimérica. El objetivo fue evaluar las propiedades físico-mecánicas de los compuestos y compararlas con los resultados obtenidos en compuestos comerciales. Las propiedades mecánicas fueron analizadas usando un diseño factorial general con un factor, dos niveles y tres variables de respuesta. La adhesión de las partículas de guadua demostró mayor resistencia a esfuerzos de tracción y módulo de elasticidad frente al obtenido en compuestos comerciales. Los compuestos de guadua presentaron mayor resistencia a la penetración debido al menor volumen de espacios vacíos entre partículas. En pruebas de absorción de agua, los compuestos de guadua tuvieron hasta un 69 % de absorción y 16 % de incremento de espesor en 24 h frente a 86 % y 22 % respectivamente en compuestos comerciales. Asimismo, en pruebas mecánicas el compuesto de guadua 500 µm fue un 23% de mayor resistencia en flexión frente al compuesto comercial. Además, los compuestos guadua 500 µm y 300 µm tuvieron mayor resistencia a la tracción hasta en 57% y 32% respectivamente en comparación al compuesto comercial. En pruebas de dureza los compuestos de guadua mostraron mayor resistencia a la penetración frente al compuesto comercial.     

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] L. Sisti, G. Totaro, M. Vannini, P. Fabbri, S. Kalia, A. Zatta, A. N. Celli, “Evaluation of the retting process as a pre-treatment of vegetable fibers for the preparation of high-performance polymer biocomposites,” Rev. Industrial Crops & Products, vol. 81, pp. 56-65, 2016, doi: 10.1016/j.indcrop.2015.11.045

[2] M. Todor, C. Bulei, T. Heput, I. Kiss, “Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste,” Rev. IOP Conference Series: Materials Science and Engineering, vol. 294, pp. 56-65, 2018, doi: 10.1088/1757-899X/294/1/012021

[3] L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, M. y S. Islam, “A Review on natural fiber reinforced polymer composite and its applications,” Rev. International Journal of Polymer Science, vol. 2015, pp. 1-15, 2015, doi: 10.1155/2015/243947

[4] L. Yan, N. Chouw, K. Jayaraman, “Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications,” Rev. Journal of Materials & Design, vol. 71, pp. 17-25, 2015, doi: 10.1016/j.matdes.2015.01.003

[5] M. Pervaiz, S. Panthapulakkal, B. KC, M. Sain, J. Tjong, “Emerging trends in automotive lightweighting through novel composite materials,” Rev. Materials Sciences and Applications, vol. 7, pp. 26-38, 2016, doi: 10.4236/msa.2016.71004

[6] O. Akampumuza, P. M. Wambua, A. Ahmed, W. Li, X. Qin, “Review of the applications of biocomposites in the automotive industry,” Rev. Polym Compos., vol. 38, no. 11, pp. 2553-2569, 2017, doi: 10.1002/pc.23847

[7] M. F. Alkbir, S. M. Sapuan, A. A. Nuraini, M. R. Ishak, “Fiber properties and crashworthiness parameters of natural fiber-reinforced composite structure: A literature review,” Rev. Composite Structures, vol. 148, pp. 59-73, 2016, doi: 10.1016/j.compstruct.2016.01.098

[8] T. Väisänen, A. Haapala, R. Lappalainen, L. Tomppo, “Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review,” Rev. Waste Management, vol. 54, pp. 62-73, 2016, doi: 10.1016/j.wasman.2016.04.037

[9] P. Jit, K. K. Pant, S. Satya, S. N. Naik, “The Material of Future,” Rev. International Journal Series in Multidisciplinary Research (IJSMR), vol. 2, no. 2, pp. 27-34, 2016, doi: 10.1000/ijsmr.v2i2.51

[10] A. Gupta, A. P. Kumar, “Potential of bamboo in sustainable development,” Rev. Asia-Pacific Business Review, vol. 4, no. 3, pp. 100-107, 2008, doi: 10.1177/097324700800400312

[11] A. K. Ray, S. K. Das, S. Mondal, P. Ramachandrarao, “Microstructural characterization of bamboo,” Rev. Journal Of Materials Science, vol. 39, no. 3, pp. 1055-1060, 2004, doi: 10.1023/B:JMSC.0000012943.27090.8f

[12] A. Gupta, A. P. Kumar, “Potential of bamboo in sustainable development,” Rev. Asia-Pacific Business Review, vol. 4, no. 3, pp. 100-107, 2008, doi: 10.1177/097324700800400312

[13] S. Diver, Bamboo: A Multipurpose Agroforestry Crop. Bute, MT, USA: ATTRA Appropriate Technology Transfer for Rural Areas, 2001.

[14] S. Gharehkhani, E. Sadeghinezhad, S. Newaz, H. Yarmand, A. Badarudin, M. Reza, M. Zubir, “Basic effects of pulp refining on fiber properties - A review,” Rev. Carbohydrate Polymers, vol. 115, pp. 785-803, 2015, doi: 10.1016/j.carbpol.2014.08.047

[15] O. Sulaiman, R. Hashim, R. Wahab, A. Ismail, H. Samsi, A. Mohamed, “Evaluation of shear strength of oil treated laminated bamboo,” Rev. Bioresource Technology, vol. 97, no. 18, pp. 2466-2469, 2006, doi: 10.1016/j.biortech.2005.10.026

[16] M. Mahdavi, P. L. Clouston, S. R. Arwade, “A low-technology approach toward fabrication of laminated bamboo lumber,” Rev. Construction and Building Materials, vol. 29, pp. 257-262, 2012, doi: 10.1016/j.conbuildmat.2011.10.046

[17] K. Okubo, T. Fujii, Y. Yamamoto, “Development of bamboo-based polymer composites and their mechanical properties,” Rev. Composites Part A: Applied Science and Manufacturing, vol. 35, no. 3, pp. 377-383, 2004, doi: 10.1016/j.compositesa.2003.09.017

[18] N. Kaur, S. Saxena, H. Gaur, P. Goyal, “A Review on Bamboo Fiber Composites and its Applications,” en International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS 2017), Dubai, United Arab Emirates, 2017, pp. 843-849, doi: 10.1109 / ICTUS.2017.8286123

[19] R. A. Sá, M. G. Sá, K. Sankar, W. M. Kriven, “Geopolymer-bamboo composite - A novel sustainable construction material,” Rev. Construction and Building Materials, vol. 123, pp. 501-507, 2016, doi: 10.1016/j.conbuildmat.2016.07.037

[20] W. Zhang, X. Yao, S. Khanal, S. Xu, “A novel surface treatment for bamboo flour and its effect on the dimensional stability and mechanical properties of high density polyethylene / bamboo flour composites,” Rev. Construction and Building Materials, vol. 186, pp. 1220-1227, 2018, doi: 10.1016/j.conbuildmat.2018.08.003

[21] F. Yang, B. Fei, Z. Wu, L. Peng, Y. Yu, “Selected Properties of Corrugated Particleboards Made from Bamboo Waste (Phyllostachys edulis) Laminated with Medium-Density Fiberboard Panels,” Rev. Bioresource, vol. 4, no. 3, pp. 1085-1096, 2014.

[22] M. Gürü, S. Tekeli, y I. Bilici, “Manufacturing of urea–formaldehyde-based composite particleboard from almond shell”, Rev. Materials and Design, vol. 27, pp. 1148–1151, 2005, doi: 10.1016/j.matdes.2005.03.003

[23] J. Ahmad, J. Kasim, L. Mohmod, “Properties of single-layer urea formaldehyde particleboard manufactured from commonly utilized malaysian bamboo (Gigantochloa scortechinii),” Rev. Bamboo and Rattan, vol. 1, No. 2, pp. 109–117, 2002.

[24] D. Biswas, S. K. Bose, M. M. Hossain, “Physical and mechanical properties of urea formaldehyde-bonded Particle board made from bamboo waste,” Rev. International Journal of Adhesion & Adhesives, vol. 31, pp. 84–87, 2011, doi: 10.1016/j.ijadhadh.2010.11.006

[25] Y. Zhang, J. Zheng, H. Guo, Y. Li, M. Lu, “Urea formaldehyde resin with low formaldehyde content modified by phenol formaldehyde intermediates and properties of its bamboo particleboards,” Rev. J. APPL. POLYM. SCI. 2015, doi: 10.1002/APP.42280

[26] V. Laemlaksakul, “Physical and Mechanical Properties of Particleboard from Bamboo Waste,” Rev. I. J. of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 4, no. 4, pp. 276-280. 2010.

[26] J. C. C. Garcia, W. Kleinn, “Length curves and volume functions for guadua bamboo (Guadua angustifolia Kunth) for the coffee region of Colombia,” Rev. European Journal of Forest Research, vol. 129, no. 6, pp. 1213-1222, 2010, doi: 10.1007/s10342-010-0411-2

[27] V. E. González, G. Fonthal, H. Ariza, “Influence of environmental conditions on the DBH of Guadua angustifolia Kunth (Poaceae: Bambusoideae) in the Colombian coffee region,” Rev. Bamboo Science and Culture, vol. 27, no. 1, pp. 27-35, 2014.

[28] J. Osorio, J. Vélez, H. J. Ciro, “Determinación de la relación de poisson de la Guadua angustifolia Kunth a partir de procesamientos de imágenes y su relación con la estructura interna,” Revista Facultad Nacional de Agronomía, vol. 60, no. 2, pp. 4067-4076, 2007.

[29] J. Correal, J. Arbeláez, “Influence of age and height position on Colombian Guadua angustifolia bamboo mechanical properties,” Rev. Maderas-Cienc Tecnol, vol. 12, no. 2, pp. 105-113, 2010, doi: 10.4067/S0718-221X2010000200005

[30] P. Luna, J. Lozano, C. Takeuchi, M. Gutiérrez, “Experimental determination of allowable stresses for bamboo Guadua angustifolia Kunth structures,” Rev. Key Engineering Materials, vol. 517, pp. 76-80, 2012, doi: 10.4028/www.scientific.net/KEM.517.76

[31] O. Hidalgo, Bamboo: The Gift of the Gods. Hipertexto Ltda, Bogotá, Colombia, 2003.

[32] H. A. Gonzalez, J. A. Montoya, J. R. Bedoya, “Comportamiento de muestras de Guadua angustifolia Kunth con diafragma y sin diafragma sometidas a esfuerzo de compresión,” Rev. Scientia et Technica, vol. 14, no 38, pp. 449-454, 2008.

[33] Standard Test Method for Determining Formaldehyde Concentrations in Air from Wood Products Using a Small-Scale Chamber, ASTM D6007-14, 2014.

[34] Wood Based Panels. Determination of Formaldehyde Content. Extraction Method Called the Perforator Method, UNE-EN 120:1994.

[35] Standard Terminology Relating to Wood-Base Fiber and Particle Panel Materials, ASTM D1554 – 10, 2010.

[36] Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle, ASTM D1037-12, 2012.

[37] Non-destructive testing - Infrared thermography. ISO 10878, 2013.

[38] E. Trujillo, M. Moesen, L. Osorio, A. W. Van Vuure, J. Ivens, I. Verpoest, “Bamboo fibres for reinforcement in composite materials: Strength Weibull analysis,” Rev. Composites: PART A, vol. 61, pp. 115-125, 2014, doi: 10.1016/j.compositesa.2014.02.003

[39] C. Kleinn y D. Morales, “An inventory of Guadua (Guadua angustifolia) bamboo in the Coffee Region of Colombia,” Rev. European Journal of Forest Research, vol. 125, no. 4, pp. 361-368, 2006, doi: 10.1007/s10342-006-0129-3

[40] U. M. K. Anwar, S. Hiziroglu, H. Hamdan, y M. A. Latif, “Effect of outdoor exposure on some properties of resin-treated plybamboo,” Rev. Industrial Crops & Products, vol. 33, no. 1, pp. 140-145, 2011, doi: 10.1016/j.indcrop.2010.09.014