Vol. 19 No. 3 (2020): Revista UIS Ingenierías
Articles

Manufacture and mechanical analysis of composites of bamboo Guadua angustifolia Kunth

Alexander Gaitán-Bermúdez
Universidad del Quindío
Gerardo Fonthal-Rivera
Universidad del Quindío

Published 2020-06-13

Keywords

  • Guadua angustifolia Kunth,
  • urea formaldehyde,
  • physical-mechanical tests,
  • water absorption,
  • thermography

How to Cite

Gaitán-Bermúdez, A., & Fonthal-Rivera, G. (2020). Manufacture and mechanical analysis of composites of bamboo Guadua angustifolia Kunth. Revista UIS Ingenierías, 19(3), 207–214. https://doi.org/10.18273/revuin.v19n3-2020019

Abstract

In this investigation, Guadua angustifolia Kunth particles composites with sizes of 500 µm and 300 µm with polymer matrix were manufactured. The goal was to evaluate the physical-mechanical properties of the composites and compare them with the results obtained in commercial composites. The mechanical properties were analyzed using a general factorial design with one factor, two levels and three response variables. The adhesion of guadua particles showed greater resistance to tensile stresses and modulus of elasticity compared to that obtained in commercial composites. Guadua composites showed greater resistance to penetration due to the smaller volume of empty spaces between particles. In water absorption tests, guadua composites had up to 69% absorption and 16% thickness increase in 24 hours versus 86% and 22% respectively in commercial composites. Also, in mechanical tests, the 500 µm guadua composites was 23% higher in flexural strength compared to the commercial composite. In addition, the 500 µm and 300 µm guadua composites had greater tensile strength of up to 57% and 32% respectively compared to the commercial composite. In hardness tests, the guadua composites showed greater resistance to penetration compared to the commercial composite.

Downloads

Download data is not yet available.

References

[1] L. Sisti, G. Totaro, M. Vannini, P. Fabbri, S. Kalia, A. Zatta, A. N. Celli, “Evaluation of the retting process as a pre-treatment of vegetable fibers for the preparation of high-performance polymer biocomposites,” Rev. Industrial Crops & Products, vol. 81, pp. 56-65, 2016, doi: 10.1016/j.indcrop.2015.11.045

[2] M. Todor, C. Bulei, T. Heput, I. Kiss, “Researches on the development of new composite materials complete / partially biodegradable using natural textile fibers of new vegetable origin and those recovered from textile waste,” Rev. IOP Conference Series: Materials Science and Engineering, vol. 294, pp. 56-65, 2018, doi: 10.1088/1757-899X/294/1/012021

[3] L. Mohammed, M. N. M. Ansari, G. Pua, M. Jawaid, M. y S. Islam, “A Review on natural fiber reinforced polymer composite and its applications,” Rev. International Journal of Polymer Science, vol. 2015, pp. 1-15, 2015, doi: 10.1155/2015/243947

[4] L. Yan, N. Chouw, K. Jayaraman, “Effect of UV and water spraying on the mechanical properties of flax fabric reinforced polymer composites used for civil engineering applications,” Rev. Journal of Materials & Design, vol. 71, pp. 17-25, 2015, doi: 10.1016/j.matdes.2015.01.003

[5] M. Pervaiz, S. Panthapulakkal, B. KC, M. Sain, J. Tjong, “Emerging trends in automotive lightweighting through novel composite materials,” Rev. Materials Sciences and Applications, vol. 7, pp. 26-38, 2016, doi: 10.4236/msa.2016.71004

[6] O. Akampumuza, P. M. Wambua, A. Ahmed, W. Li, X. Qin, “Review of the applications of biocomposites in the automotive industry,” Rev. Polym Compos., vol. 38, no. 11, pp. 2553-2569, 2017, doi: 10.1002/pc.23847

[7] M. F. Alkbir, S. M. Sapuan, A. A. Nuraini, M. R. Ishak, “Fiber properties and crashworthiness parameters of natural fiber-reinforced composite structure: A literature review,” Rev. Composite Structures, vol. 148, pp. 59-73, 2016, doi: 10.1016/j.compstruct.2016.01.098

[8] T. Väisänen, A. Haapala, R. Lappalainen, L. Tomppo, “Utilization of agricultural and forest industry waste and residues in natural fiber-polymer composites: A review,” Rev. Waste Management, vol. 54, pp. 62-73, 2016, doi: 10.1016/j.wasman.2016.04.037

[9] P. Jit, K. K. Pant, S. Satya, S. N. Naik, “The Material of Future,” Rev. International Journal Series in Multidisciplinary Research (IJSMR), vol. 2, no. 2, pp. 27-34, 2016, doi: 10.1000/ijsmr.v2i2.51

[10] A. Gupta, A. P. Kumar, “Potential of bamboo in sustainable development,” Rev. Asia-Pacific Business Review, vol. 4, no. 3, pp. 100-107, 2008, doi: 10.1177/097324700800400312

[11] A. K. Ray, S. K. Das, S. Mondal, P. Ramachandrarao, “Microstructural characterization of bamboo,” Rev. Journal Of Materials Science, vol. 39, no. 3, pp. 1055-1060, 2004, doi: 10.1023/B:JMSC.0000012943.27090.8f

[12] A. Gupta, A. P. Kumar, “Potential of bamboo in sustainable development,” Rev. Asia-Pacific Business Review, vol. 4, no. 3, pp. 100-107, 2008, doi: 10.1177/097324700800400312

[13] S. Diver, Bamboo: A Multipurpose Agroforestry Crop. Bute, MT, USA: ATTRA Appropriate Technology Transfer for Rural Areas, 2001.

[14] S. Gharehkhani, E. Sadeghinezhad, S. Newaz, H. Yarmand, A. Badarudin, M. Reza, M. Zubir, “Basic effects of pulp refining on fiber properties - A review,” Rev. Carbohydrate Polymers, vol. 115, pp. 785-803, 2015, doi: 10.1016/j.carbpol.2014.08.047

[15] O. Sulaiman, R. Hashim, R. Wahab, A. Ismail, H. Samsi, A. Mohamed, “Evaluation of shear strength of oil treated laminated bamboo,” Rev. Bioresource Technology, vol. 97, no. 18, pp. 2466-2469, 2006, doi: 10.1016/j.biortech.2005.10.026

[16] M. Mahdavi, P. L. Clouston, S. R. Arwade, “A low-technology approach toward fabrication of laminated bamboo lumber,” Rev. Construction and Building Materials, vol. 29, pp. 257-262, 2012, doi: 10.1016/j.conbuildmat.2011.10.046

[17] K. Okubo, T. Fujii, Y. Yamamoto, “Development of bamboo-based polymer composites and their mechanical properties,” Rev. Composites Part A: Applied Science and Manufacturing, vol. 35, no. 3, pp. 377-383, 2004, doi: 10.1016/j.compositesa.2003.09.017

[18] N. Kaur, S. Saxena, H. Gaur, P. Goyal, “A Review on Bamboo Fiber Composites and its Applications,” en International Conference on Infocom Technologies and Unmanned Systems (Trends and Future Directions) (ICTUS 2017), Dubai, United Arab Emirates, 2017, pp. 843-849, doi: 10.1109 / ICTUS.2017.8286123

[19] R. A. Sá, M. G. Sá, K. Sankar, W. M. Kriven, “Geopolymer-bamboo composite - A novel sustainable construction material,” Rev. Construction and Building Materials, vol. 123, pp. 501-507, 2016, doi: 10.1016/j.conbuildmat.2016.07.037

[20] W. Zhang, X. Yao, S. Khanal, S. Xu, “A novel surface treatment for bamboo flour and its effect on the dimensional stability and mechanical properties of high density polyethylene / bamboo flour composites,” Rev. Construction and Building Materials, vol. 186, pp. 1220-1227, 2018, doi: 10.1016/j.conbuildmat.2018.08.003

[21] F. Yang, B. Fei, Z. Wu, L. Peng, Y. Yu, “Selected Properties of Corrugated Particleboards Made from Bamboo Waste (Phyllostachys edulis) Laminated with Medium-Density Fiberboard Panels,” Rev. Bioresource, vol. 4, no. 3, pp. 1085-1096, 2014.

[22] M. Gürü, S. Tekeli, y I. Bilici, “Manufacturing of urea–formaldehyde-based composite particleboard from almond shell”, Rev. Materials and Design, vol. 27, pp. 1148–1151, 2005, doi: 10.1016/j.matdes.2005.03.003

[23] J. Ahmad, J. Kasim, L. Mohmod, “Properties of single-layer urea formaldehyde particleboard manufactured from commonly utilized malaysian bamboo (Gigantochloa scortechinii),” Rev. Bamboo and Rattan, vol. 1, No. 2, pp. 109–117, 2002.

[24] D. Biswas, S. K. Bose, M. M. Hossain, “Physical and mechanical properties of urea formaldehyde-bonded Particle board made from bamboo waste,” Rev. International Journal of Adhesion & Adhesives, vol. 31, pp. 84–87, 2011, doi: 10.1016/j.ijadhadh.2010.11.006

[25] Y. Zhang, J. Zheng, H. Guo, Y. Li, M. Lu, “Urea formaldehyde resin with low formaldehyde content modified by phenol formaldehyde intermediates and properties of its bamboo particleboards,” Rev. J. APPL. POLYM. SCI. 2015, doi: 10.1002/APP.42280

[26] V. Laemlaksakul, “Physical and Mechanical Properties of Particleboard from Bamboo Waste,” Rev. I. J. of Chemical, Molecular, Nuclear, Materials and Metallurgical Engineering, vol. 4, no. 4, pp. 276-280. 2010.

[26] J. C. C. Garcia, W. Kleinn, “Length curves and volume functions for guadua bamboo (Guadua angustifolia Kunth) for the coffee region of Colombia,” Rev. European Journal of Forest Research, vol. 129, no. 6, pp. 1213-1222, 2010, doi: 10.1007/s10342-010-0411-2

[27] V. E. González, G. Fonthal, H. Ariza, “Influence of environmental conditions on the DBH of Guadua angustifolia Kunth (Poaceae: Bambusoideae) in the Colombian coffee region,” Rev. Bamboo Science and Culture, vol. 27, no. 1, pp. 27-35, 2014.

[28] J. Osorio, J. Vélez, H. J. Ciro, “Determinación de la relación de poisson de la Guadua angustifolia Kunth a partir de procesamientos de imágenes y su relación con la estructura interna,” Revista Facultad Nacional de Agronomía, vol. 60, no. 2, pp. 4067-4076, 2007.

[29] J. Correal, J. Arbeláez, “Influence of age and height position on Colombian Guadua angustifolia bamboo mechanical properties,” Rev. Maderas-Cienc Tecnol, vol. 12, no. 2, pp. 105-113, 2010, doi: 10.4067/S0718-221X2010000200005

[30] P. Luna, J. Lozano, C. Takeuchi, M. Gutiérrez, “Experimental determination of allowable stresses for bamboo Guadua angustifolia Kunth structures,” Rev. Key Engineering Materials, vol. 517, pp. 76-80, 2012, doi: 10.4028/www.scientific.net/KEM.517.76

[31] O. Hidalgo, Bamboo: The Gift of the Gods. Hipertexto Ltda, Bogotá, Colombia, 2003.

[32] H. A. Gonzalez, J. A. Montoya, J. R. Bedoya, “Comportamiento de muestras de Guadua angustifolia Kunth con diafragma y sin diafragma sometidas a esfuerzo de compresión,” Rev. Scientia et Technica, vol. 14, no 38, pp. 449-454, 2008.

[33] Standard Test Method for Determining Formaldehyde Concentrations in Air from Wood Products Using a Small-Scale Chamber, ASTM D6007-14, 2014.

[34] Wood Based Panels. Determination of Formaldehyde Content. Extraction Method Called the Perforator Method, UNE-EN 120:1994.

[35] Standard Terminology Relating to Wood-Base Fiber and Particle Panel Materials, ASTM D1554 – 10, 2010.

[36] Standard Test Methods for Evaluating Properties of Wood-Base Fiber and Particle, ASTM D1037-12, 2012.

[37] Non-destructive testing - Infrared thermography. ISO 10878, 2013.

[38] E. Trujillo, M. Moesen, L. Osorio, A. W. Van Vuure, J. Ivens, I. Verpoest, “Bamboo fibres for reinforcement in composite materials: Strength Weibull analysis,” Rev. Composites: PART A, vol. 61, pp. 115-125, 2014, doi: 10.1016/j.compositesa.2014.02.003

[39] C. Kleinn y D. Morales, “An inventory of Guadua (Guadua angustifolia) bamboo in the Coffee Region of Colombia,” Rev. European Journal of Forest Research, vol. 125, no. 4, pp. 361-368, 2006, doi: 10.1007/s10342-006-0129-3

[40] U. M. K. Anwar, S. Hiziroglu, H. Hamdan, y M. A. Latif, “Effect of outdoor exposure on some properties of resin-treated plybamboo,” Rev. Industrial Crops & Products, vol. 33, no. 1, pp. 140-145, 2011, doi: 10.1016/j.indcrop.2010.09.014