Vol. 19 No. 4 (2020): Revista UIS Ingenierías
Articles

A methodology for computational design of scaffolds to be used in bone repair

Diana Reboledo-Grau
Universidad Simón Bolívar
Gabriela Martínez-Bordes
Universidad Austral de Chile

Published 2020-09-18

Keywords

  • scaffolds,
  • biomechanics,
  • finite elements,
  • femur,
  • biodegradable

How to Cite

Reboledo-Grau, D., & Martínez-Bordes, G. (2020). A methodology for computational design of scaffolds to be used in bone repair. Revista UIS Ingenierías, 19(4), 301–314. https://doi.org/10.18273/revuin.v19n4-2020025

Abstract

Scaffolds are customized structures, whose designs influences cell growth for tissue repair. However, they are still under constant study to meet all the biological requirements. In this work, a methodology is proposed, and the behavior of various scaffold designs are numerically evaluated by using the finite elements method. Different geometries are evaluated by varying the material and pore size. Subsequently, after selecting the designs, the viability of the scaffolds in a scaffold-bone-plate assembly in two healing stages was evaluated. The initial, when there is no bone inside the scaffold, and the final repair, when the scaffold is full of bone material. For its evaluation, an equivalent scaffold geometry was proposed using basic homogenization techniques. It was observed that the bone within the Ti6Al4V scaffold significantly increases the mechanical properties of the area, and important areas of stress concentration can be generated. This highlights the convenience of the scaffold being biodegradable to avoid subsequent injuries to the patient, due to the difference in stiffness along the femur. In this evaluation, only two biocompatible materials were considered, such as titanium-aluminum-vanadium (Ti6Al4V) and polylactic acid (PLLA) (biodegradable).

Downloads

Download data is not yet available.

References

[1] F. Markets, “Global Orthopedic Implants Market is Expected to Reach USD 8.97 Billion by 2025 : Fior Markets”, Orthopedic Implants Market by Product (Reconstructive Joint Replacement, Spinal Implants, Dental Implants, Other), Biomaterial, Regions, Global Industry Analysis, Market Size, Share, Growth, Trends, and Forecast 2018 to 2025, 2019, [En línea]. Disponible en: https://www.globenewswire.com/news-release/2019/08/29/1908228/0/en/Global-Orthopedic-Implants-Market-is-Expected-to-Reach-USD-8-97-Billion-by-2025-Fior-Markets.html.

[2] L. Polo-Corrales, M. Latorre-Esteves, J. E. Ramirez-Vick, “Scaffold design for bone regeneration”, J. Nanosci. Nanotechnol., vol. 14, no. 1, pp. 15-56, 2014, doi: 10.1166/jnn.2014.9127

[3] D. Borges, “Laboratorios Ortopédicos sufren sin recursos por crisis económica”, El Nacional, 31-oct-2017, [En línea]. Disponible en: http://www.el-nacional.com/noticias/sociedad/laboratorios-ortopedicos-sufren-sin-recursos-por-crisis-economica_207125.

[4] J. G. Birch, M. L. Samchukov, “Utilización del método de Ilizarov para corregir las deformidades de las extremidades inferiores de niños y adolescentes”, J. Am. Acad. Orthop. Surg. (Edición Española), vol. 3, no. 4, pp. 216-226, 2004.

[5] G. C. Guerrero, O. R. Serafín, “Transportación ósea”, medigraphic Artemisa en línea, vol. 4, no. 3, pp. 185-194, 2008.

[6] A. S. Brydone, D. Meek, S. Maclaine, “Bone grafting, orthopaedic biomaterials, and the clinical need for bone engineering”, Proc. Inst. Mech. Eng. H., vol. 224, no. 12, pp. 1329-1343, 2010, doi: 10.1243/09544119JEIM770

[7] M. J. Olszta et al., “Bone structure and formation: A new perspective”, Mater. Sci. Eng. R Reports, vol. 58, no. 3-5, pp. 77-116, 2007, doi: 10.1016/j.mser.2007.05.001

[8] S. Bose, M. Roy, A. Bandyopadhyay, “Recent advances in bone tissue engineering scaffolds”, Trends Biotechnol., vol. 30, no. 10, pp. 546-554, 2012, doi: 10.1016/j.tibtech.2012.07.005

[9] T. Albrektsson, C. Johansson, “Osteoinduction, osteoconduction and osseointegration”, Eur. Spine J., vol. 10, pp. S96-S101, oct. 2001, doi: 10.1007/s005860100282

[10] M. A. Velasco, C. A. Narváez-Tovar, D. A. Garzón-Alvarado, “Design, Materials, and Mechanobiology of Biodegradable Scaffolds for Bone Tissue Engineering”, Biomed Res. Int., vol. 2015, pp. 1-21, 2015, doi: 10.1155/2015/729076

[11] S. Saberianpour, M. Heidarzadeh, M. H. Geranmayeh, H. Hosseinkhani, R. Rahbarghazi, M. Nouri, “Tissue engineering strategies for the induction of angiogenesis using biomaterials”, J. Biol. Eng., vol. 12, no. 1, pp. 36, dic. 2018, doi: 10.1186/s13036-018-0133-4

[12] A. T. Díaz, J. P. Sánchez, J. R. Zabalbeascoa, J. C. Fernández, M. Mella Sousa, “Sustitutos óseos”, Rev. la Soc. Andaluza Traumatol. y Ortop., vol. 26, no. 1, pp. 2-13, 2008.

[13] X. Y. Cheng et al., “Compression deformation behavior of Ti–6Al–4V alloy with cellular structures fabricated by electron beam melting”, J. Mech. Behav. Biomed. Mater., vol. 16, pp. 153-162, 2012, doi: 10.1016/j.jmbbm.2012.10.005

[14] A. Grémare et al., “Characterization of printed PLA scaffolds for bone tissue engineering”, J. Biomed. Mater. Res. Part A, vol. 106, no. 4, pp. 887-894, 2018, doi: 10.1002/jbm.a.36289.

[15] P. Simamora, W. Chern, “Poly-L-lactic acid: an overview”, J. Drugs Dermatol., vol. 5, no. 5, pp. 436-440, 2006.

[16] F. Katsamanis, D. D. Raftopoulos, “Determination of mechanical properties of human femoral cortical bone by the Hopkinson bar stress technique”, J. Biomech., vol. 23, no. 11, pp. 1173-1184, 1990, doi: 10.1016/0021-9290(90)90010-Z

[17] P. S. R. S. Maharaj, R. Maheswaran, A. Vasanthanathan, “Numerical Analysis of Fractured Femur Bone with Prosthetic Bone Plates”, Procedia Eng., vol. 64, pp. 1242-1251, 2013, doi: 10.1016/j.proeng.2013.09.204

[18] H. H. Bayraktar, E. F. Morgan, G. L. Niebur, G. E. Morris, E. K. Wong, T. M. Keaveny, “Comparison of the elastic and yield properties of human femoral trabecular and cortical bone tissue”, J. Biomech., vol. 37, no. 1, pp. 27-35, 2004, doi: 10.1016/S0021-9290(03)00257-4

[19] D. W. Hutmacher, J. T. Schantz, C. X. F. Lam, K. C. Tan, T. C. Lim, “State of the art and future directions of scaffold-based bone engineering from a biomaterials perspective”, J. Tissue Eng. Regen. Med., vol. 1, no. 4, pp. 245-260, jul. 2007, doi: 10.1002/term.24

[20] M. Handbook, Properties and Selection: Nonferrous Alloys and Special-Purpose Materials, 10th ed. The Materials Information Society, New York, NY, USA: ASM International, 1990.

[21] W. Ziaja, “Finite element modelling of the fracture behaviour of surface treated Ti-6Al-4V alloy”, Arch. Comput. Mater. Sci. Surf. Eng., vol. 1, no. 1, pp. 53-60, 2009.

[22] R. G. Sinclair, “The Case for Polylactic Acid as a Commodity Packaging Plastic”, J. Macromol. Sci. Part A, vol. 33, no. 5, pp. 585-597, 1996, doi: 10.1080/10601329608010880.

[23] G. Wypych, “PLA poly (lactic acid)”, en Handbook of Polymers, Toronto, Canadá: Elsevier, 2012, pp. 436-440.

[24] J. Wieding, R. Souffrant, W. Mittelmeier, R. Bader, “Finite element analysis on the biomechanical stability of open porous titanium scaffolds for large segmental bone defects under physiological load conditions”, Med. Eng. Phys., vol. 35, no. 4, pp. 422-432, 2013, doi: 10.1016/j.medengphy.2012.06.006

[25] J. Parthasarathy, B. Starly, S. Raman, A. Christensen, “Mechanical evaluation of porous titanium (Ti6Al4V) structures with electron beam melting (EBM)”, J. Mech. Behav. Biomed. Mater., vol. 3, no. 3, pp. 249-259, 2010, doi: 10.1016/j.jmbbm.2009.10.006

[26] L. Facchini, E. Magalini, P. Robotti, A. Molinari, “Microstructure and mechanical properties of Ti‐6Al‐4V produced by electron beam melting of pre‐alloyed powders”, Rapid Prototyp. J., vol. 15, no. 3, pp. 171-178, 2009, doi: 10.1108/13552540910960262

[27] X. Li, C. Wang, W. Zhang, Y. Li, “Fabrication and characterization of porous Ti6Al4V parts for biomedical applications using electron beam melting process”, Mater. Lett., vol. 63, no. 3-4, pp. 403-405, 2009, doi: 10.1016/j.matlet.2008.10.065

[28] S. Goodman, S. Toksvig-Larsen, P. Aspenberg, “Ingrowth of bone into pores in titanium chambers implanted in rabbits: Effect of pore cross-sectional shape in the presence of dynamic shear”, J. Biomed. Mater. Res., vol. 27, no. 2, pp. 247-253, 1993, doi: 10.1002/jbm.820270215

[29] M. Mahmoudi, “Femur Bone. de GrabCAD”, 2017. [En línea]. Disponible en: https://grabcad.com/library/femur-bone-2.

[30] J. Sonderegger, K. R. Grob, M. S. Kuster, “Dynamic plate osteosynthesis for fracture stabilization: how to do it”, Orthop. Rev. (Pavia)., vol. 2, no. 1, pp. 4, 2010, doi: 10.4081/or.2010.e4

[31] K. C. N. Kumar, T. Tandon, P. Silori, A. Shaikh, “Biomechanical Stress Analysis of a Human Femur Bone Using ANSYS”, Mater. Today Proc., vol. 2, no. 4-5, pp. 2115-2120, 2015, doi: 10.1016/j.matpr.2015.07.211

[32] M. C. X. Pinto, V. A. M. Goulart, R. C. Parreira, L. T. Souza, N. de Cássia Oliveira Paiva, R. R. Resende, “Implications of Substrate Topographic Surface on Tissue Engineering”, en Current Developments in Biotechnology and Bioengineering, Elsevier, 2017, pp. 287-313.