Vol. 19 No. 2 (2020): Revista UIS Ingenierías
Articles

Dephosphorization of iron ores by acid leaching in static medium

María Alejandra Molina
Universidad Simón Bolívar
Pedro Delvasto
Universidad Industrial de Santander
Antonio Ballester-Pérez
Universidad Complutense de Madrid

Published 2020-03-09

Keywords

  • high phosphorus iron ore,
  • acid leaching,
  • chemical dephosphorization,
  • heat treatment,
  • static leaching

How to Cite

Molina, M. A., Delvasto, P., & Ballester-Pérez, A. (2020). Dephosphorization of iron ores by acid leaching in static medium. Revista UIS Ingenierías, 19(2), 51–58. https://doi.org/10.18273/revuin.v19n2-2020006

Abstract

The dephosphorization of certain iron ores from two different countries, Brazil and Venezuela, was studied in percolation columns, using 0.6 M HCl as leaching agent. Additionally, the effect of a previous heat treatment performed at 900°C for 1 hour was studied. Minerals were characterized before leaching by X-ray fluorescence (XRF), X-ray diffraction (XRD) and porosimetry. In the remaining solutions, pH was measured and Fe and P were determined by atomic absorption spectroscopy (AAS) and ultraviolet-visible spectroscopy (UV-Vis), respectively. The leached ores were chemically characterized by XRF. It was found that the dephosphorization was particularly effective in the case of the heat-treated ores, as a result of the structural changes registered which facilitated phosphorus leaching. The dephosphorization rate was 23 times higher in the Brazilian heat-treated ore and 262 times in the Venezuelan one.

Downloads

Download data is not yet available.

References

[1] J. Poveromo, "Iron Ores", en The Making, Shaping and Treating of Steel, Ironmaking, D. Wakelin, Ed. Pittsburgh, PA, USA: The AISE Steel Foundation, 1999, pp. 547-642.

[2] A. C. Pereira y R. M. Papini, “Processes for phosphorus removal from iron ore - A review”, Rev. Esc. Minas, vol. 68, no. 3, pp. 331–335, Jul. 2015, doi: 10.1590/0370-44672014680202

[3] A. Sue y G. Schajer, Handbook of Residual Stress and Deformation of Steel, Materials Park, Ohio: ASM International, 2002.

[4] M. A. Tayeb, S. Spooner, y S. Sridhar, “Phosphorus: The Noose of Sustainability and Renewability in Steelmaking”, JOM, vol. 66, no. 9, pp. 1565–1571, Sep. 2014, doi: 10.1007/s11837-014-1093-x

[5] K. Quast, “A review on the characterisation and processing of oolitic iron ores”, Miner. Eng., vol. 126, pp. 89–100, Sep. 2018, doi: 10.1016/j.mineng.2018.06.018

[6] M. Muhammed y Y. Zhang, “A hydrometallurgical process for the dephosphorization of iron ore”, Hydrometallurgy, vol. 21, no. 3, pp. 277–292, May 1989, doi: 10.1016/0304-386X(89)90002-9

[7] S. Matsuo, R. Ikeda y S. Inaga, “Method of dephosphorising ore”, Patente CRL/T 13278, 1980.

[8] Y. Jin, T. Jiang, Y. Yang, Q. Li, G. Li, y Y. Guo, “Removal of phosphorus from iron ores by chemical leaching”, J. Cent. South Univ. Technol., vol. 13, no. 6, pp. 673–677, Dic. 2006, doi: 10.1007/s11771-006-0003-y

[9] W. Xia, Z. Ren, y Y. Gao, “Removal of Phosphorus From High Phosphorus Iron Ores by Selective HCl Leaching Method”, J. Iron Steel Res. Int., vol. 18, no. 5, pp. 1–4, May 2011, doi: 10.1016/S1006-706X(11)60055-1

[10] Y. Zhang y M. Muhammed, “The removal of phosphorus from iron ore by leaching with nitric acid”, Hydrometallurgy, vol. 21, no. 3, pp. 255–275, May 1989, doi: 10.1016/0304-386X(89)90001-7

[11] R. D. Dukino, B. M. England, y M. Kneeshaw, “Phosphorus distribution in BIF-derived iron ores of Hamersley Province, Western Australia”, Appl. Earth Sci., vol. 109, no. 3, pp. 168–176, Dec. 2000, doi: 10.1179/aes.2000.109.3.168

[12] L. Zhang, R. Machiela, P. Das, M. Zhang, y T. Eisele, “Dephosphorization of unroasted oolitic ores through alkaline leaching at low temperature”, Hydrometallurgy, vol. 184, pp. 95–102, Mar. 2019, doi: 10.1016/j.hydromet.2018.12.023

[13] C. Y. Cheng, V. N. Misra, J. Clough, y R. Muni, “Dephosphorisation of western australian iron ore by hydrometallurgical process”, Miner. Eng., vol. 12, no. 9, pp. 1083–1092, Sep. 1999, doi: 10.1016/S0892-6875(99)00093-X

[14] B. L. Levintov, V. A. Mirko, M. D. Kantemirov, A. N. Klimushkin, V. A. Naidenov, y A. V. Bobir, “Structure of oolitic brown iron ores and their influence on the thermochemical enrichment of Lisakovsk concentrates”, Steel Transl., vol. 37, no. 8, pp. 681–685, Aug. 2007, doi: 10.3103/S0967091207080086

[15] G. Li, S. Zhang, M. Rao, Y. Zhang, y T. Jiang, “Effects of sodium salts on reduction roasting and Fe–P separation of high-phosphorus oolitic hematite ore”, Int. J. Miner. Process., vol. 124, pp. 26–34, Nov. 2013, doi: 10.1016/j.minpro.2013.07.006

[16] M. Rao, C. Ouyang, G. Li, S. Zhang, Y. Zhang, y T. Jiang, “Behavior of phosphorus during the carbothermic reduction of phosphorus-rich oolitic hematite ore in the presence of Na2SO4”, Int. J. Miner. Process., vol. 143, pp. 72–79, Oct. 2015, doi: 10.1016/j.minpro.2015.09.002

[17] C. Xu, T. Sun, J. Kou, Y. Li, X. Mo, y L. Tang, “Mechanism of phosphorus removal in beneficiation of high phosphorous oolitic hematite by direct reduction roasting with dephosphorization agent”, Trans. Nonferrous Met. Soc. China, vol. 22, no. 11, pp. 2806–2812, Nov. 2012, doi: 10.1016/S1003-6326(11)61536-7

[18] Minería Química ITGE. España: Instituto Tecnológico Geominero, 1991.

[19] P. Palacios, L. De Los Santos, A. Bustamante y J. González, “Estudio de la deshidroxilación en el óxido férrico hidratado denominado limonita”, Revista de la Sociedad Química del Perú, vol. 78, no 3, pp. 198-207, 2012.

[20] F. Feret, "Mining: Mineral Ores and Products", en Industrial Applications of X-Ray Diffraction, F. Chung and D. Smith, Eds., Boca Raton, FL, USA: CRC Press, 1999, pp. 385-413.

[21] A. P. Barbour, “Distrubution of Phosphorus in the Iron Ore Deposits Of Itabira,Minas Gerais,Brazil”, Econ. Geol., vol. 68, no. 1, pp. 52–64, 1973, doi: 10.2113/gsecongeo.68.1.52

[22] A. P. L. Nunes, C. L. L. Pinto, G. E. S. Valadão, y P. R. de M. Viana, “Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation”, Miner. Eng., vol. 39, pp. 206–212, Dic. 2012, doi: 10.1016/j.mineng.2012.06.004

[23] G. Peixoto, “Improvement of the reduction process in P content and other gangues in iron ore and its agglomerates”, Patente 93/10271, 27-May- 1991.

[24] A. Pavese, G. Artioli, y S. Hull, “In situ powder neutron diffraction of cation partitioning vs. pressure in Mg (sub 0.94) Al (sub 2.04) O 4 synthetic spinel”, Am. Mineral., vol. 84, no. 5–6, pp. 905–912, Jun. 1999, doi: 10.2138/am-1999-5-625

[25] C. J. Goss, “The kinetics and reaction mechanism of the goethite to hematite transformation”, Mineral. Mag., vol. 51, no. 361, pp. 437–451, Sep. 1987, doi: 10.1180/minmag.1987.051.361.11

[26] O. Sequera y R. Ramírez, “Fósforo, calcio y azufre disponibles de la roca fosfórica acidulada con ácido sulfúrico y tiosulfato de amonio”, Interciencia, vol. 28, no. 10, pp. 604-610+563, 2003.

[27] P. K. Narayanaswamy, “The α-β transformation in quartz”, Proc. Indian Acad. Sci. - Sect. A, vol. 28, no. 5, p. 417, Nov. 1948, doi: 10.1007/BF03170805

[28] L. Longa-Avello, C. Pereyra-Zerpa, J. A. Casal-Ramos, y P. Delvasto, “Study of the calcination process of two limonitic iron ores between 250°C and 950°C”, Rev. Fac. Ing., vol. 26, no. 45, pp. 33–45, 2017.

[29] D. Zhu, H. Wang, J. Pan, y C. Yang, “Influence of Mechanical Activation on Acid Leaching Dephosphorization of High-phosphorus Iron Ore Concentrates”, J. Iron Steel Res. Int., vol. 23, no. 7, pp. 661–668, Jul. 2016, doi: 10.1016/S1006-706X(16)30103-0