Automatic identification of gas storage cylinders using hopfield neural networks
Published 2012-06-15
Keywords
- Artificial Vision,
- gas cylinders,
- codes,
- serials,
- artificial neural networks
- hopfield ...More
How to Cite
Abstract
Companies engaged in the manufacture, marketing and maintenance of cylinders for liquefied petroleum gas in Colombia, stamped steel plates and welded to the product a unique serial code to be identified within the cylinder of the country park. Currently, the identification process is manual and checked approximately 7000 cylinders per day in a single factory. The main objective of this paper is to present a vision system that uses artificial neural networks to recognize the code. This system consists physically of a portable device that controls light environment and scene for the acquisition of images. Another component of the system is to adjust the image. The adjustment is based on median filtering, binarization, label, and segmentation, this processing allows more meaningful information and image discrimination. Finally, the intelligent component identification is performed with Hopfield neural networks and an algorithm that checks the development of image recognition. The effectiveness of the system was reported with experimental results obtained on the basis of error with a significant number of samples.
Downloads
References
- Cilindros de acero con costura para gases licuados de petróleo -glp- con capacidad desde 5 kg incluido, hasta 46 kg excluido. NTC 522-1. 2003
- J. Villanueva y S. Córdova, “Sistema de visión artificial”, Universidad de San Martin de Porres, Peru 2010.
- Rosenbluth, A. E.; Progler, C.; Fullenbaum, M.,” Confocal filtering of the instantaneous image in scanned darkfield alignment,” Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol 11, pp. 2183 - 2190 Nov 1993.
- C. Solomon, T. Breckson, Fundamentals of Digital Image Processing: A Practical Approach with Examples in MATLAB, John Wiley & Sons, Inc., USA, 2011.
- Gonzalez, Word, Eddins; Digital Image Processing Using Matlab, 2 ed, 2002.
- M. Rao, S. Bopardikar. Wavelet Transforms: Introduction to Theory and Applications. Addison-Wesley, USA ,1998.
- Weeks Michael; Digital signal processing using MATLAB and Wavelets. [8] Majid Rabbani; Wavelet Compression and the JPEG2000 Standard; Eastman Kodad Research Laboratories; 2003.
- O. Medina, D. Mery,”Inspeccion visual automática de botellas de vino usa adaptada”. Encuentro Chileno de Ciencias de la Computación, 3-8 Noviembre, Chillán. 2003.
- J. Esqueda, L., Palafox, Fundamentos de Procesamiento de Imágenes, Universidad Autónoma de Baja California. Departamento de Editorial Universitaria, México. 2005.
- C. Gonzales; R. Woods, Tratamiento digital de señales, Addison-Wesley Iberoamerica, S.A / Ediciones Díaz de Santos; 1992.
- Otsu, N., “A Threshold Selection Method from Gray-Level Histograms,” IEEE Transactions on Systems, Man, and Cybernetics, Vol. 9, No. 1, pp. 62-66. 1979.
- J. Freixenet. “Operaciones morfológicas” Computer Vision and Robotic Group. Universitat de Girona. España 2011.
- M. Balbuena, Recuperación rápida de imágenes mediante memorias asociativa, M. Ing. Tésis, México, Dic, 2008.
- Haralick M., G. Shapiro, Computer and Robot Vision, Volume I, Addison-Wesley, pp. 28-48. 1992.
- A. Mirzaei, R. Safabakhsh, Optimal matching by the transiently chaotic neural network, Applied Soft Computing, Volume 9, Issue 3, pp 863-873, 2009
- M. Seow, H. Ngo, Vijayan K. Asari, Systolic implementation of 2D block-based Hopfield neural network for efficient pattern association, Microprocessors and Microsystems, Volume 27, Issue 8, pp 359-366, 2003
- X. Dou; F. Song “Based on discrete Hopfield neural network and wavelet transform character recognition” IEEE - Electric Information and Control Engineering (ICEICE), 2011 International Conference on, Tangshan, China 2011.