Vol. 20 No. 4 (2021): Revista UIS Ingenierías
Articles

Influence of Vetiver and Eucalyptus on slopes stability

Luis David Chaparro-Sarmiento
Universidad Industrial de Santander
Wilmer Josué Castañeda-Quijano
Universidad Industrial de Santander
Óscar F. Sánchez-Ortiz
Universidad Industrial de Santander

Published 2021-08-17

Keywords

  • slope stability,
  • Eucalyptus,
  • Vetiver,
  • security factor,
  • vegetation,
  • roots,
  • limit equilibrium
  • ...More
    Less

How to Cite

Chaparro-Sarmiento, L. D., Castañeda-Quijano, W. J., & Sánchez-Ortiz, Óscar F. (2021). Influence of Vetiver and Eucalyptus on slopes stability. Revista UIS Ingenierías, 20(4), 171–188. https://doi.org/10.18273/revuin.v20n4-2021014

Abstract

At the local ambit, eucalyptus and vetiver are common plants in Colombia, which can consider by their stabilizing effect by local engineers. It was carried out an analysis of the effect on stability produced by eucalyptus and vetiver on different kinds of soils, varying the geometry, the inclination angle, and considering the water table effect. The method of analysis used is the limit equilibrium under the Mohr-Coulomb criteria. The root effect shown in cohesion added varies depending on soil depth, and plant type, as well as the weight of eucalyptus, are the parameters that are considered in the use of vegetation as a slope stabilizing agent. The effect of water on the slope can be seen in the results, being significant in the slope safety factor, especially when the inclinations angles are low and affected by the type of vegetation present. Finally, the effectiveness of eucalyptus in slope stability was demonstrated, the only negative factor being its weight on high slopes, while the contribution offered by the young vetiver to the stability of the slope is not very significant.

Downloads

Download data is not yet available.

References

[1] J. S. Xu, X. L. Yang, “Three-dimensional stability analysis of slope in unsaturated soils considering strength nonlinearity under water drawdown”, Eng. Geol., vol. 237, pp. 102-115, 2018, doi: 10.1016/j.enggeo.2018.02.010.

[2] I. Khubulava, G. Chakhaia, “The forecast of stability of the landslide slope existing in the River Gldaniskhevi Valley,” Ann. Agrar. Sci., vol. 16, no. 3, pp. 321-323, 2018, doi: 10.1016/j.aasci.2018.05.008.

[3] J. Suárez Díaz, “Prevención, Estabilización y Diseño”, en Deslizamientos y estabilidad de taludes en zonas tropicales, 1998, pp. 385-428.

[4] C. Sanhueza, G. Villavicencio, “Influencia de la cohesión aparente generada por raíces sobre la estabilidad de un talud natural en las dunas de Reñaca”, Rev. la Constr., vol. 11, no. 1, pp. 16-31, 2012, doi: 10.4067/S0718-915X2012000100003.

[5] L. P. H. Van Beek, J. Wint, L. H. Cammeraat, J. P. Edwards, “Observation and simulation of root reinforcement on abandoned mediterranean slopes”, en Eco y bioingeniería del suelo: el uso de la vegetación para mejorar la estabilidad de las pendientes. Desarrollos en Ciencias Vegetales y del Suelo, vol. 103, A. Stokes, I. Spanos, J. Norris, E. Cammeraat (eds) Springer, Dordrecht, 2007, doi: 10.1007/978-1-4020-5593-5_10.

[6] A. Paz Cardona, “Hace 9 meses estudios advertían de tragedia en Mocoa”, Medio Ambiente, 2017 [En línea]. Disponible en: https://sostenibilidad.semana.com/medio-ambiente/articulo/mocoa-corpoamazonia-advirtio-de-la-tragedia-por-deforestacion/37471.

[7] H. Zhu, L. M. Zhang, T. Xiao, X. Y. Li, “Enhancement of slope stability by vegetation considering uncertainties in root distribution”, Comput. Geotech., vol. 85, pp. 84-89, 2017, doi: 10.1016/j.compgeo.2016.12.027.

[8] K. H. Eab, S. Likitlersuang, A. Takahashi, “Laboratory and modelling investigation of root-reinforced system for slope stabilisation”, Soils Found., vol. 55, no. 5, pp. 1270-1281, 2015, doi: 10.1016/j.sandf.2015.09.025.

[9] Y. Li et al., “Influence of the spatial layout of plant roots on slope stability”, Ecol. Eng., vol. 91, pp. 477-486, 2016, doi: 10.1016/j.ecoleng.2016.02.026.

[10] N. K. Kokutse, “Slope stability and vegetation : Conceptual and numerical investigation of mechanical effects”, Ecological Engineering, vol. 86, pp. 146-153, 2016, doi: 10.1016/j.ecoleng.2015.11.005.

[11] L. J. Escobar Toro, Y. Valencia González, “Análisis de estabilidad y probabilidad de falla de dos taludes de suelo tropical en la autopista Medellín-Bogotá en el tramo de vía entre marinilla y santuario”, Boletín ciencias de la tierra, 2012 [En línea]. Disponible en: https://revistas.unal.edu.co/index.php/rbct/article/view/31253/43364.

[12] N. S. Nilaweera, P. Nutalaya, “Role of tree roots in slope stabilisation”, Bull. Eng. Geol. Environ., vol. 57, no. 4, pp. 337-342, 1999, doi: 10.1007/s100640050056.

[13] G. Flórez, “Efectividad de la bioingeniería para el tratamiento de la erosión y los movimientos en masa en laderas”, tesis de maestría, Universidad de Manizales, 2014.

[14] J. E. Benavides, “Arboles y arbustos forrajeros: una alternativa agroforestal para la ganadería”, en FAO animal production and health paper, 1999, pp. 367-390.

[15] Food and Agriculture Organization of the United Nations (FAO), El eucalipto en la repoblación forestal. 1981.

[16] D. H. Ashton, “The root and shoot development of Eucalyptus regnans F. Muell”, Aust. J. Bot., vol. 23, no. 6, pp. 867-887, 1975, doi: 10.1071/BT9750867.

[17] U. Salazar Gómez, “El vetiver agarra el suelo Flojo”, El Colombiano, 2011, [En línea]. Disponible en: http://www.elcolombiano.com/historico/el_vetiver_agarra_el_suelo_flojo-DGec_121637.

[18] R. Grimshaw, “Vetiver, un excelente pasto para la conservación del agua”, LEISA, 1999, [En línea]. Disponible en: http://www.leisa-al.org/web/index.php/volumen-14-numero-1/2499-vetiver-un-excelente-pasto-para-la-conservacion-del-agua.

[19] L. A. Bárcenas Montenegro, L. R. Díaz Martínez, G. L. Flores Baquedano, “Evaluación de la actividad antioxidante de 12 especies vegetales”, tesis de grado, Universidad Nacional Autónoma de Nicaragua, 2012.

[20] P. Hurtado, A. L. U. Z. Villa, F. R. Durán, “Estudio de mercado de aceite esencial de naranja en Colombia en el período 2009-2014”, Revista Colombiana de Ciencias Hortícolas, vol. 10, no. 2, pp. 301-310, 2014, doi: 10.17584/rcch.2016v10i2.4653.

[21] S. B. Mickovski, A. Stokes, R. van Beek, M. Ghestem, T. Fourcaud, “Simulation of direct shear tests on rooted and non-rooted soil using finite element analysis”, Ecol. Eng., vol. 37, no. 10, pp. 1523-1532, 2011, doi: 10.1016/j.ecoleng.2011.06.001.

[22] T. C. T. Hubble, D. W. Airey, H. K. Sealey, E. V. De Carli, S. L. Clarke, “A little cohesion goes a long way: Estimating appropriate values of additional root cohesion for evaluating slope stability in the Eastern Australian highlands”, Ecol. Eng., vol. 61, pp. 621-632, 2013, doi: 10.1016/j.ecoleng.2013.07.069.

[23] S. B. Mickovski, L. P. H. van Beek, “Root morphology and effects on soil reinforcement and slope stability of young vetiver (Vetiveria zizanioides) plants grown in semi-arid climate”, Plant Soil, vol. 324, no. 1, pp. 43-56, 2009, doi: 10.1007/s11104-009-0130-y.

[24] T. C. T. Hubble, B. B. Docker, I. D. Rutherfurd, “The role of riparian trees in maintaining riverbank stability: A review of Australian experience and practice”, Ecol. Eng., vol. 36, no. 3, pp. 292-304, 2010, doi: 10.1016/j.ecoleng.2009.04.006.

[25] T. C. T. Hubble, I. D. Rutherfurd, “Evaluating the relative contributions of vegetation and flooding in controlling channel widening: The case of the Nepean River, Southeastern Australia”, Aust. J. Earth Sci., vol. 57, no. 5, pp. 525-541, 2010, doi: 10.1080/08120099.2010.492910.

[26] T. T. Van, P. Truong, “R & D Results on Unique Contributes of Vetiver Applicable for Its Use in Disaster Mitigation Purposes in Vietnam”, en First Indian National Vetiver Workshop, Cochin, India, 2008, pp. 103-115.