Vol. 19 No. 3 (2020): Revista UIS Ingenierías
Articles

Respuesta ferrimagnética-antiferromagnética sintonizable mediante la inclusión de Fe en la manganita basada en gadolinio GdMnO3

Jorge Cardona-Vasquez
Universidad Nacional de Colombia
David Landínez-Téllez
Universidad Nacional de Colombia
Jairo Roa-Rojas
Universidad Nacional de Colombia

Published 2020-05-26

Keywords

  • crystalline structure,
  • magnetic feature,
  • rare-earth based perovskite,
  • ferri- antiferromagnetic transition

How to Cite

Cardona-Vasquez, J., Landínez-Téllez, D., & Roa-Rojas, J. (2020). Respuesta ferrimagnética-antiferromagnética sintonizable mediante la inclusión de Fe en la manganita basada en gadolinio GdMnO3. Revista UIS Ingenierías, 19(3), 69–78. https://doi.org/10.18273/revuin.v19n3-2020007

Abstract

In this work a study of the synthesis process, crystal structure and magnetic behavior of gadolinium manganite with Fe substitutions in Mn positions of GdMn1-xFexO3 (x=0, 0.1, 0.2) is reported. The samples were synthetized by the conventional solid-state reaction method. Structural characterization of final compounds was analyzed by Rietveld refinement, which revealed its crystallization in an orthorhombic symmetry belonging to the Pbnm (No. 62) space group. Results reveal that a and c cell parameters and the unit cell volume increase, while the lattice parameter b and the cell volume decrease with Fe substitution. The main effect in the structure is related to oxygen positions, i.e. in the octahedral distortions and rotations. DC susceptibility measurements, in the temperature regime between 4 K and 300 K on the application of an external field of 200 Oe, show a paramagnetic feature at high temperatures for all x studied values, with magnetic transitions associated to a magnetic ordered state at low temperatures (21.8 K < T < 25.2 K). Meanwhile, a ferrimagnetic transition is detected for x=0.1 close to T=30.7 K. In order to explain the appearance of ferrimagnetism for this configuration, a model is suggested where an imbalance in the magnetic structure of GdMnO3 (type-A antiferromagnetic) generated due to the introducing a Fe3+ ion in each pair consecutive unit cells is proposed. The effective magnetic moment obtained agrees to the reported value for the material with x=0.0, confirming the ferrimagnetic behavior for this concentration of Fe3+ in the structure.

Downloads

Download data is not yet available.

References

[1] K.A. Müller, T.W. Kool, Properties of Perovskites and other oxides. Singapore: World Scientific Publishing Co. Pte. Ltd., 2010.

[2] C.E. Deluque, A.V. Gil, J.I. Villa, D.A. Landínez Téllez, J. Roa-Rojas, “Half-metallic electronic feature and thermophysical properties of the Ba2CoMoO6 perovskite-like cobalt molybdate,” Revista UIS Ingenierías, vol. 19, no. 1, pp. 213-224, 2020, doi: 10.18273/revuin.v18n4-2020020

[3] F. Dogan, H. Lin, M. Guilloux, O. Peña, “Focus on properties and applications of perovskites,” Sci. Technol. Adv. Mater. vol. 16, no. 2, pp. 020301, 2015, doi: 10.1088 / 1468-6996 / 16/2/020301

[4] A. Urushibara, Y. Moritomo, T. Arima, A. Asamitsu, G. Kido, Y. Tokura, “Insulator-metal transition and giant magnetoresistance in La1−xSrxMnO3,” Phys. Rev. B, vol. 51, no. 20, pp. 14103-14109, 1995, doi: 10.1103/PhysRevB.51.14103.

[5] N.A. Spaldin, Magnetic Materials Fundamentals and Applications. New York, NY, USA: Cambridge University Press, 2011.

[6] R.D. Johnson, D.D. Khalyavin, P. Manuel, L. Zhang, K. Yamaura, A.A. Belik, “Magnetic structures of the rare-earth quadruple perovskite manganites RMn7O12,” Phys. Rev. B, vol. 98, no. 10, pp. 104423-1 - 104423-10, 2018, doi: 10.1103/PhysRevB.98.104423

[7] H. Liu, X. Yang, “A brief review on perovskite multiferroics,” Ferroelectrics, vol. 507, no. 1, pp. 69-85, 2017, doi: 0.1080/00150193.2017.1283171

[8] S. Dong, R. Yu, S. Yunoki, J.M. Liu, E. Dagotto, “Double-exchange model study of multiferroic RMnO3 perovskites,” Eur. Phys. J. B, vol. 71, no. 3, pp. 339-344, 2009, doi: 10.1140/epjb/e2009-00225-1

[9] J. Dho, W.S. Kim, E.O. Chi, N.H. Hur, S.H. Park, H.C. Ri, “Colossal magnetoresistance in perovskite manganite induced by localized moment of rare earth ion,” Sol. Stat. Commun., vol. 125, no. 3-4, pp. 143-147, 2003, doi: 10.1016/S0038-1098(02)00775-5

[10] P.P. Rout, S.K. Pradhan, S.K. Das, B.K. Roul, “Room temperature ferroelectricity in multiferroic HoMnO3 ceramics,” Physica B, vol. 407, no. 12, pp. 2072-2077, 2012, doi: 10.1016/j.physb.2012.02.007

[11] S. Dong, R. Yu, S. Yunoki, J.M. Liu, E. Dagotto, “Double-exchange model study of multiferroic RMnO3 perovskites,” Eur. Phys. J. B, vol. 71, no. 3, pp. 339, 2009, doi: 10.1140/epjb/e2009-00225-1

[12] D.I. Khomskii, “Coupled Electricity and magnetism in Solids,” Multiferroic Materials: Properties, Techniques and Applications, Ed. by J. Wang, CRC. New York, NY, USA: Press Taylor & Francis, 2017, pp. 54-65.

[13] J.A. Cardona, D. A. Landínez Téllez, J. Roa-Rojas, “Physical properties of the new multiferroic perovskite-like material HoMn1-xFexO3,” Physica B, vol. 455, no. 24, pp. 39-43, 2014, doi: 10.1016/j.physb.2014.07.041

[14] J.A Cardona, D. A. Landínez Téllez, C. A. Collazos, J. Roa-Rojas, “Structural and magnetic characterization of the new GdMn1-xFex O3 perovskite material,” J. Phys.: Confer. Ser., vol. 687, no. 1, pp. 012087-1 – 012087-4, 2015, doi: 10.1088/1742-6596/687/1/012087

[15] A. Pal, P. Murugavel, “Investigations on the effect of magnetic ordering on dielectric relaxation in polycrystalline GdMn1-xFexO3,” Physica B, vol. 555, no. 3, pp. 99-105, 2019, doi: 10.1016/j.physb.2018.11.057

[16] C.A. Triana, D. A. Landínez Téllez, J. Roa-Rojas, “General study on the crystal, electronic and band structures, the morphological characterization, and the magnetic properties of the Sr2DyRuO6 complex perovskite,” Mater. Character., vol. 99, no. 1, pp. 128–141, 2015, doi: 10.1016/j.matchar.2014.11.021

[17] A.C. Larson, R.B. Von, “General Structure Analysis System (GSAS)” USA: Los Alamos National Laboratory Report LAUR, pp. 86, 2004.

[18] B.H. Toby, “EXPGUI, a graphical user interface for GSAS,” J. Appl. Cryst., vol. 34, no. 2, pp. 210-213, 2001, doi: 10.1107/S0021889801002242

[19] A.M. Glazer, “The classification of tilted octahedra in perovskites,” Acta Cryst. B, vol. 28, pp. 3384-3392, 1972, doi: 10.1107/S0567740872007976

[20] K. Momma y F. Izumi, “VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data,” J. Appl. Cryst., vol. 44, pp. 1272-1276, 2011, doi: 10.1107/S0021889811038970

[21] W.S. Ferreira, J.A. Moreira, A. Almeida, M.R. Chaves, J.P. Araújo, J.B. Oliveira, J.M. Machado, M.A. Sá, T.M. Mendonça, P. Simeão, J. Kreisel, J.L. Ribeiro, L.G. Vieira, P.B. Tavares, S. Mendonça, “Spin-phonon coupling and magnetoelectric properties: EuMnO3 versus GdMnO3,” Phys. Rev. B, vol. 79, no. 5, pp. 054303-1 – 054303-6, 2009, doi: 10.1103/PhysRevB.79.054303

[22] J.A. Cuervo, D.M. Aljure, R. Cardona, J.A. Rodríguez, D.A. Landínez Téllez. J. Roa-Rojas, “Structure, ferromagnetic, dielectric and electronic features of the LaBiFe2O6 material,” J. Low Temp. Phys., vol. 186, no. 5-6, pp. 295–315, 2017, doi: 10.1007 / s10909-016-1714-6