Vol. 19 Núm. 4 (2020): Revista UIS Ingenierías
Artículos

El análisis del error humano en la manufactura: un elemento clave para mejorar la calidad de la producción

Yaniel Torres-Medina
École de Technologie Supérieure de Montréal

Publicado 2020-07-29

Palabras clave

  • fiabilidad humana,
  • sistema de ensamblaje,
  • complejidad,
  • ergonomía,
  • mejora continua,
  • carga cognitiva
  • ...Más
    Menos

Cómo citar

Torres-Medina, Y. (2020). El análisis del error humano en la manufactura: un elemento clave para mejorar la calidad de la producción. Revista UIS Ingenierías, 19(4), 53–62. https://doi.org/10.18273/revuin.v19n4-2020005

Resumen

A pesar del creciente nivel de automatización industrial, el ensamblaje manual continúa desempeñando un rol fundamental en diversos sectores de la manufactura. Sin embargo, las operaciones de tipo manual son susceptibles de errores humanos que ocasionan problemas de calidad y pérdidas económicas. El presente artículo se propone mostrar algunos métodos que permiten identificar diferentes tipos de errores y evaluar la influencia de factores que afectan el desempeño del trabajador. Se muestran, en particular, los métodos SHERPA y HEART. Igualmente se discute sobre la importancia de considerar la complejidad del ensamblaje por su negativo impacto en la carga cognitiva del trabajador lo que puede aumentar la probabilidad de error. En el artículo se emplean conceptos provenientes de la literatura especializada y se realiza una articulación de varias ramas del conocimiento tales como la ergonomía, la ingeniería industrial y la fiabilidad de sistema.

Descargas

Los datos de descargas todavía no están disponibles.

Referencias

[1] K. G. Swift, J. D. Booker, "Chapter 10 - Assembly Systems", en Manufacturing Process Selection Handbook, K. G. Swift and J. D. Booker, Eds. Oxford: Butterworth-Heinemann, 2013, pp. 281-289.

[2] F. Beuß, J. Sender, W. Flügge, "Ergonomics Simulation in Aircraft Manufacturing – Methods and Potentials", Procedia CIRP, vol. 81, pp. 742-746, 2019.

[3] D. Correia, F. J. G. Silva, R. M. Gouveia, T. Pereira, L. P. Ferreira, "Improving manual assembly lines devoted to complex electronic devices by applying Lean tools", Procedia Manufacturing, vol. 17, pp. 663-671, 2018, doi: 10.1016/j.promfg.2018.10.115

[4] V. D. Pasquale, S. Miranda, W. P. Neumann, A. Setayesh, "Human reliability in manual assembly systems: a Systematic Literature Review", IFAC-PapersOnLine, vol. 51, no. 11, pp. 675-680, 2018, doi: 10.1016/j.ifacol.2018.08.396

[5] H. Bubb, "Human reliability: A key to improved quality in manufacturing", Human Factors and Ergonomics in Manufacturing & Service Industries, vol. 15, no. 4, pp. 353-368, 2005, doi: 10.1002/hfm.20032

[6] C. Kern, R. Refflinghaus, "Expert System for Evaluating Human Reliability in Manual Assembly Operations", en 18thToulon-Verona International Conference, Palermo, 2015.

[7] B. J. Smales, "Introduction to britain as the workshop of the world 1830–1914", en Economic History, Ed.: Butterworth-Heinemann, 1975, pp. 55.

[8] F. Alizon, S. B. Shooter, T. W. Simpson, "Henry Ford and the Model T: lessons for product platforming and mass customization", Design Studies, vol. 30, no. 5, pp. 588-605, 2009, doi: 10.1016/j.destud.2009.03.003

[9] B. Lotter, H.-P. Wiendahl, "Changeable and Reconfigurable Assembly Systems", en Changeable and Reconfigurable Manufacturing Systems, H. A. ElMaraghy, Ed. London: Springer London, 2009, pp. 127-142.

[10] D. Romero et al., "Towards an Operator 4.0 Typology: A Human-Centric Perspective on the Fourth Industrial Revolution Technologies", en CIE46 Proceedings, Tianjin, China, 2016, pp. 1-11.

[11] Y. Torres, S. Nadeau, "Operator 4.0 in manufacturing: trends, potential technologies and future perspectives", en Frühjahrskongress der Gesellschaft für Arbeitswissenschaft, Berlin, Alemania, 2020, vol. 66.

[12] Y. Torres, S. Nadeau, K. Landau, "Assembly Guidance Systems in Aerospace Manufacturing", en Kongress der Gesellschaft für Arbeitswissenschaft, Alemania, 2020.

[13] F. Kong, "Development of metric method and framework model of integrated complexity evaluations of production process for ergonomics workstations", International Journal of Production Research, vol. 57, no. 8, pp. 2429-2445, 2019, doi: 10.1080/00207543.2018.1519266

[14] S. Mattsson, Å. Fast-Berglund, D. Li, P. Thorvald, "Forming a cognitive automation strategy for Operator 4.0 in complex assembly", Computers & Industrial Engineering, vol. 139, pp. 105360, 2018, doi: 10.1016/j.cie.2018.08.011

[15] A. D. Swain, "Comparative evaluation of methods for human reliability analysis", Gesellschaft fuer Reaktorsicherheit m.b.H., Alemania, Rep. GRS--71, 1989.

[16] E. Hollnagel, "Human reliability assessment in context", Nuclear Engineering and Technology, vol. 37, no. 2, pp. 159-166, 2005.

[17] A.-C. Falck, R. Örtengren, M. Rosenqvist, "Assembly failures and action cost in relation to complexity level and assembly ergonomics in manual assembly (part 2)", International Journal of Industrial Ergonomics, vol. 44, no. 3, pp. 455-459, 2014, doi: 10.1016/j.ergon.2014.02.001

[18] B. D. Richards, "Error Probabilities and Relationships in Assembly and Maintenance of Aircraft Engines", Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 62, no. 1, pp. 1599-1603, 2018, doi: 10.1177/1541931218621361

[19] D. Gates, "Boeing tanker jets grounded due to tools and debris left during manufacturing," 2019 [En línea]. Disponible en: https://www.seattletimes.com/business/boeing-aerospace/boeing-tanker-jets-grounded-due-to-tools-and-debris-left-during-manufacturing/.

[20] A.-C. Falck, M. Rosenqvist, "A model for calculation of the costs of poor assembly ergonomics (part 1)", International Journal of Industrial Ergonomics, vol. 44, no. 1, pp. 140-147, 2014, doi: 10.1016/j.ergon.2013.11.013

[21] A. D. Swain, H. E. Guttmann, "Handbook of human-reliability analysis with emphasis on nuclear power plant applications. Final report", Sandia National Labs., Albuquerque, NM, USA, Rep. NUREG / CR - 1278, 1983.

[22] B. Kirwan, "Human error identification in human reliability assessment. Part 1: Overview of approaches", Applied Ergonomics, vol. 23, no. 5, pp. 299-318, 1992, doi: 10.1016/0003-6870(92)90292-4

[23] D. E. Embrey, "SHERPA: A systematic human error reduction and prediction approach", en Proceedings of the international topical meeting on advances in human factors in nuclear power systems. United States: American Nuclear Society, 1986, pp. 184-193.

[24] Y. Torres, S. Nadeau, K. Landau, "Application of human errors analysis in manufacturing: A proposed intervention framework and techniques selection", en Frühjahrskongress der Gesellschaft für Arbeitswissenschaft, Kongress der Gesellschaft für Arbeitswissenschaft, 2019, vol. 65.

[25] R. Lane, N. A. Stanton, D. Harrison, "Applying hierarchical task analysis to medication administration errors", Applied Ergonomics, vol. 37, no. 5, pp. 669-679, 2006, doi: 10.1016/j.apergo.2005.08.001

[26] J. C. Williams, "Heart—A Proposed Method for Achieving High Reliability in Process Operation by Means of Human Factors Engineering Technology", Safety and Reliability, vol. 35, no. 3, pp. 5-25, 2015, doi: 10.1080/09617353.2015.11691046

[27] A. Kolus, R. Wells, P. Neumann, "Production quality and human factors engineering: A systematic review and theoretical framework", Applied Ergonomics, vol. 73, pp. 55-89, 2018, doi: 10.1016/j.apergo.2018.05.010

[28] P. Thorvald, J. Lindblom, R. Andreasson, "On the development of a method for cognitive load assessment in manufacturing", Robotics and Computer-Integrated Manufacturing, vol. 59, pp. 252-266, 2019, doi: 10.1016/j.rcim.2019.04.012

[29] G. Fan, A. Li, Y. Zhao, G. Moroni, L. Xu, "Human factors’ complexity measurement of human-based station of assembly line", Human Factors and Ergonomics in Manufacturing & Service Industries, vol. 28, no. 6, pp. 342-351, 2018, doi: 10.1002/hfm.20738

[30] A.-C. Falck, M. Tarrar, S. Mattsson, L. Andersson, M. Rosenqvist, R. Söderberg, "Assessment of manual assembly complexity: a theoretical and empirical comparison of two methods", International Journal of Production Research, vol. 55, no. 24, pp. 7237-7250, 2017, doi: 10.1080/00207543.2017.1330571

[31] R. Kent, "Chapter 8 - Design quality management," en Quality Management in Plastics Processing, Ed.: Elsevier, 2016, pp. 227-262.

[32] A. Mital, A. Desai, A. Subramanian, y A. Mital, "7 - Designing for Assembly and Disassembly," en Product Development (Second Edition), Eds. Oxford: Elsevier, 2014, pp. 159-202.

[33] H. Jack, "Chapter 9 - Universal Design Topics," en Engineering Design, Planning, and Management, Ed. Boston: Academic Press, 2013, pp. 323-380.

[34] M. Richardson, G. Jones, M. Torrance, T. Baguley, "Identifying the Task Variables That Predict Object Assembly Difficulty", Human Factors, vol. 48, no. 3, pp. 511-525, 2006, doi: 10.1518/001872006778606868

[35] S. Mattsson et al., "Validation of the complexity index method at three manufacturing companies", en IEEE International Symposium on Assembly and Manufacturing (ISAM), 2013, pp. 55-57.

[36] A.-C. Falck, R. Örtengren, M. Rosenqvist, R. Söderberg, "Criteria for Assessment of Basic Manual Assembly Complexity", Procedia CIRP, vol. 44, pp. 424-428, 2016, doi: 10.1016/j.procir.2016.02.152

[37] X. Zhu, S. J. Hu, Y. Koren, S. P. Marin, "Modeling of Manufacturing Complexity in Mixed-Model Assembly Lines", Journal of Manufacturing Science and Engineering, vol. 130, no. 5, pp. 649-659, 2008, doi: 10.1115/MSEC2006-21078

[38] L. Zeltzer, V. Limère, H. Van Landeghem, E.-H. Aghezzaf, J. Stahre, "Measuring complexity in mixed-model assembly workstations", International Journal of Production Research, vol. 51, no. 15, pp. 4630-4643, 2013, doi: 10.1080/00207543.2013.783246