Effect of use residual sludge from water treatment plants as a partial substitute for clay for refractory bricks production
Published 2020-10-21
Keywords
- pyroscopic resistance,
- refractory bricks,
- residual sludge,
- water treatment plants
How to Cite
Copyright (c) 2020 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The sludge generated from water treatment has been classified as a potential environmental pollutant. Because of its chemical composition similar to clay, was proposed to evaluate the effect of its incorporation as a partial substitute for traditional clay materials in the manufacture of aluminosilicate refractory bricks. The raw materials used were characterized by XRD and XRF; the prototypes designed were mixed, extruded, dried and firing at 1200 °C, evaluating their linear shrinkage, apparent density, porosity, water absorption and mechanical and pyroscopic resistance (melting cone softening point). The results show the addition of 10% of sludges from industrial water treatment plant, contributed to elevate the softening point the clay that obtaining a refractory brick capable to supporting a temperature up to 1430 °C.
Downloads
References
[2] L. Acosta, “Estado del arte del tratamiento de aguas por coagulación-floculación,” ICIDCA. Sobre los Derivados de la Caña de Azucar, vol. XL, no. 2, pp. 10-17, 2006.
[3] G. Roldán, J. Ramírez, Fundamentos de limnología neotropical, Segunda ed. Medellín, Colombia: Universidad de Antioquía, 2008.
[4] N. D. Tzoupanos, A. I. Zouboulis, “Coagulation-flocculation processes in water/wastewater treatment: the application of new generation of chemical reagents,” in 6th IASME/WSEAS International Conference on Heat Transfer, Thermal Engieering and Environment, Rhodes, Grecia, 2008, pp. 309-317.
[5] A. Matilainen, M. Vepsäläinen, M. Sillanpää, “Natural organic matter removal by coagulation during drinking water treatment: A review,” Advances in Colloid and Interface Science, vol. 159, pp. 189-197, 2010, doi: 10.1016/j.cis.2010.06.007
[6] O. Gibert, B. Lefèvre, A. Teuler, X. Bernat, J. Tobella, “Distribution of dissolved organic matter fractions along several stages of a drinking water treatment plant,” Journal of Water Process Engineering, vol. 6, pp. 64-71, 2015, doi: 10.1016/j.jwpe.2015.03.006
[7] Y. T. Chee, M. B. Pretty, P. Y. Katrina, Y. W. Ta, “Recent Advancement of Coagulation–Flocculation and Its Application in Wastewater Treatment,” Industrial & Engineering Chemistry Research, vol. 55, no. 16, pp. 4363-4389, 2016, doi: 10.1021/acs.iecr.5b04703
[8] L. Semerjian, G. Ayoub, “High-pH–magnesium coagulation–flocculation in wastewater treatment,” Advances in Environmental Research, vol. 7, pp. 389-403, 2003, doi: 10.1016/S1093-0191(02)00009-6
[9] M. Tantawy, “Characterization and pozzolanic properties of calcined alum sludge,” Materials Research Bulletin, vol. 61, pp. 415-421, 2015, doi: 10.1016/j.materresbull.2014.10.042
[10] T. Ahmad, K. Ahmad, M. Alam, “Characterization of Water Treatment Plant’s Sludge and its Safe Disposal Options,” Procedia Environmental Sciences, vol. 35, pp. 950-955, 2016, doi:
10.1016/j.proenv.2016.07.088
[11] S. Jiménez, M. M. Micó, M. Arnaldos, F. Medina, S. Contreras, “State of the art of produced water treatment,” Chemosphere, vol. 192, pp. 186-208, 2018, doi: 10.1016/j.chemosphere.2017.10.139
[12] S. C. Bondy, “Low levels of aluminum can lead to behavioral and morphological changes associated with Alzheimer's disease and age-related neurodegeneration,” NeuroToxicology, vol. 52, pp. 222-
229, 2016. doi: 10.1016/j.neuro.2015.12.002
[13] Z. Wang, X. Wei, J. Yang, J. Suo, J. Chen, X. Liu, X. Zhao, “Chronic exposure to aluminum and risk of Alzheimer’s disease: A meta-analysis,” Neuroscience Letters, vol. 610, pp. 200-206, 2016, doi: 10.1016/j.neulet.2015.11.014
[14] G. Chobanoglous, Wastewater engineering, treatment, disposal and reuse. New Delh, USA: McGraw-Hill, 1987.
[15] L. Jin, G. Zhang, “Current state of sewage treatment in China,” Water Research, vol. 66, pp. 85-98, 2014, doi: 10.1016/j.watres.2014.08.014
[16] E. Metcalf, Wastewater Engineering: Treatment and Resource Recovery. Nueva York, USA: McGraw Hill Education, 2013.
[17] B. M. Cieslik, J. Namiesnik, P. Konieczka, “Review of sewage sludge management: standards, regulations and analytical methods,” Journal of Cleaner Production, vol. 90, pp. 1-15, 2015, doi: 10.1016/j.jclepro.2014.11.031
[18] A. Kelessidis, A. Stasinakis, “Comparative study of the methods used for treatment and final disposal of sewage sludge in European countries,” Waste Management, vol. 32, pp. 1186-1195, 2012, doi: 10.1016/j.wasman.2012.01.012
[19] G. Yang, G. Zhang, H. Wang, “Current state of sludge production, management, treatment and disposal in China,” Water Research, vol. 78, pp. 60-73, 2015, doi: 10.1016/j.watres.2015.04.002
[20] M. Kacprzaka, E. Neczaj, A. Fijalkowski, A. Grobelak, A. Grosser, M. Worwag, A. Rorat, H. Brattebo, A. Almas, B. Ram, “Sewage sludge disposal strategies for sustainable development,” Environmental Research, vol. 156, pp. 39-46, 2017, doi: 10.1016/j.envres.2017.03.010
[21] F. Agmar, K. Fagnani, H. Alves, L. Colpini, S. Kunh, S. Nastri, L. Conserva, F. Melchiades, “Effect of incorporating sludge from poultry slaughterhouse wastewater treatment system in ceramic mass for tile production,” Environmental Technology & Innovation, vol. 9, pp. 294-302, 2018, doi: 10.1016/j.eti.2017.11.010
[22] M. Juel, A. Mizan, T. Ahmed, “Sustainable use of tannery sludge in brick manufacturing in Bangladesh,” Waste Management, vol. 60, pp. 259-269, 2017, doi: 10.1016/j.wasman.2016.12.041
[23] J. Cusidó, L. Cremades, C. Soriano, M. Devant, “Incorporation of paper sludge in clay brick formulation: Ten years of industrial experience,” Applied Clay Science, vol. 108, pp. 191-198, 2015, doi: 10.1016/j.clay.2015.02.027
[24] D. Eliche, R. Azevedo, F. Corpas, “Effect of sludge from oil refining industry or sludge from pomace oil extraction industry addition to clay ceramics,” Applied Clay Science, vol. 114, pp. 202-211, 2015, doi: 10.1016/j.clay.2015.06.009
[25] S. Amin, E. Abdel, Hamid, S. El-Sherbiny, H. Sibak, M. Abadir, “The use of sewage sludge in the production of ceramic floor tiles,” HBRC Journal, pp. 1-7, 2017, doi: 10.1016/j.hbrcj.2017.02.002
[26] L. Araujo, S. Molina, L. Noguera, “Aprovechamiento de los lodos provenientes de plantas de tratamiento de aguas residuales como materia prima en la industria de la construcción: revisión bibliográfica,” Revista Agunkuyâa, vol. 8, no. 1, pp. 1-11, 2018.
[27] M. Ramírez, A. Vásquez, J. Gómez, F. Cabrera, “Total replacement of recycled aggregate and treated wastewater: concrete recycling in extremis,” Journal of Sustainable Architecture and Civil Engineering , vol. 15, no. 2, pp. 66-75, 2016, doi: 10.5755/j01.sace.15.2.15464
[28] S. Abo-El-Enein, A. Shebl, S. Abo-El-Dahab, “Drinking water treatment sludge as an efficient adsorbent for heavy metals removal,” Applied Clay Science, vol. 146, pp. 343-349, 2017, doi: 10.1016/j.clay.2017.06.027
[29] M. Tantawy, S. Ramadan, “Middle Eocene clay from Goset Abu Khashier: Geological assessment and utilization with drinking water treatment sludge in brick manufacture,” Applied Clay Science, vol. 138, pp. 114-124, 2017, doi: 10.1016/j.clay.2017.01.005
[30] O. Kizinievič, V. Kizinievič, R. Boris, G. Girskas, J. Malaiškienė, “Eco-efficient recycling of drinking water treatment sludge and glass waste: development of ceramic bricks,” Journal of Material Cycles and Waste Management, pp. 1-11, 2017 , doi: 10.1007/s10163-017-0688-z
[31] P. Torres, D. Hernández, D. Paredes, “Uso productivo de lodos de plantas de tratamiento de agua potable en la fabricación de ladrillos cerámicos,” Revista ingeniería de construcción, vol. 12, no. 3, pp. 145-154, 2012, doi: 10.4067/S0718-50732012000300003
[32] S. Pracidelli, F. Melchiades, “Importância da composição granulométrica de massas para a cerâmica vermelha,” Cerâmica Industrial, vol. 2, no. 1, pp. 31-35, 1997.
[33] A. Sarabia, J. Sánchez, J. Leyva, “Uso de nutrientes tecnológicos como materia prima en la fabricación de materiales de construcción en el paradigma de la economía circular,” Respuestas, vol. 22, no. 1, pp. 6-16, 2017, doi: 10.22463/0122820X.815
[34] Método de ensayo para determinar el cono pirométrico equivalente -CPE- de materiales refractarios silicoaluminosos y de alta alúmina. ICONTEC NTC 706, 2018.
[35] Materiales Refractarios. Clasificación General. ICONTEC NTC 623, 1972.
[36] Metodos de enzayo para determinar posoridad aparente, absorción de agua, gravedad específica aparente y densidad aparente por agua en ebullición de ladrillos refractarios y piezas refractarias quemadas, ICONTEC NTC 674, 2002.
[37] M. Lassinantti, A. Gualtieri, S. Gagliardi, P. Ruffini, R. Ferrari, M. Hanuskova, “Thermal conductivity of fired clays: Effects of mineralogical and physical properties of the raw materials,” Applied Clay Science, vol. 49, no. 3, pp. 269-275, 2010.
[38] J. Linares, F. Huertas, J. Capel, “La arcilla como material cerámico. Características y comportamiento,” Cuadernos de prehistoria y arqueología de la Universidad de Granada, vol. 8, pp. 479-490, 1983.
[39] J. García, M. J. Ortz, A. Saburit, G. Silva, “Thermal conductivity of traditional ceramics: Part II: Influence of mineralogical composition,” Ceramics International, vol. 36, no. 7, pp. 2017-2024, 2010, doi: 10.1016/j.ceramint.2010.05.013
[40] A. García, “Origen y composición de las arcillas cerámicas,” Boletin de la Sociedad Española de Cerámica y Vidrio, vol. 24, no. 6, pp. 395-404, 1985.
[41] M. Fernandez, Manual sobre fabricación de baldosas, tejas y ladrillos. Terrassa, España: Beralmar, 2000.
[42] E. Galán, P. Aparicio, “Materias primas para la industria cerámica,” Seminarios de la Sociedad Española de Mineralogía, vol. 2, pp. 31-49, 2006.
[43] D. C. Alvarez, J. Sánchez, F. A. Corpas, J. F. Gelves, “Características de las materias primas usadas por las empresas del sector cerámico del área metropolitana de Cúcuta (Colombia),” Boletín de la Sociedad Española de Cerámica y Vidrio, vol. 5, no. 6, pp. 247-256, 2018, doi: 10.1016/j.bsecv.2018.04.002
[44] I. Bernal, H. Cabezas, C. Espitia, J. Mojica, J. Quintero, “Análisis próximo de arcillas para cerámica,” Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales, vol. 27, no. 105, pp. 569-578, 2003.
[45] K. Swapan, D. Kausik, S. Nar, S. Ritwik, “Shrinkage and strength behaviour of quartzitic and kaolinitic clays in wall tile compositions,” Applied Clay Science, vol. 29, no. 2, pp. 137-143, 2005, doi: 10.1016/j.clay.2004.10.002
[46] Á. X. Moreno, “Obtención tecnológica de mullita a parir de arcillas y caolines refractarios argentinos, y alúmina calcinada o alúminas hidratadas,” doctoral thesis, Universidad Nacional de La Plata, Buenos Aires, 2014.
[47] R. L. Coble, W. D. Kingery, “Effect of Porosity on Physical Properties of Sintered Alumina,” Journal of the American Ceramic Society, vol. 39, no. 11, pp. 377-385, 1956, doi: 10.1111/j.1151-2916.1956.tb15608.x
[48] E. Ertugrul, A. Mustafa, “Utilization of sewage sludge, oven slag and fly ash in clay brick production,” Construction and Building Materials, vol. 194, pp. 110-121, 2019, doi: 10.1016/j.conbuildmat.2018.10.231
[49] W. Callister, Introducción a la ciencia e ingeniería de los materiales. Barcelona, España: Reverté, 2007.
[50] P. A. Ospina, “Influencia de la Adición o Aumento en la Cantidad de Mullita en la Resistencia a la Flexión de una Pasta de Porcelana Eléctrica Comercial,” doctoral thesis, Universidad Nacional de Colombia, Medellín, 2015.
[51] C. Rodríguez, G. Cultrone, A. Sánchez, A. Sebastian, “EM study of mullite growth after muscovite breakdown,” American Mineralogist, vol. 88, no. 5-6, pp. 713-724, 2003.
[52] W. E. Lee, G. P. Souza, C. J. McConville, T. Tarvornpanich, Y. Iqbal, “Mullite formation in clays and clay-derived vitreous ceramics,” Journal of the European Ceramic Society, vol. 28, no. 2, pp. 465-471, 2008, doi: 10.1016/j.jeurceramsoc.2007.03.009
[53] Oxford University, Diccionario de Ciencias. Madrid, España: Editorial Computlense S.A., 2000.