Vol. 19 No. 4 (2020): Revista UIS Ingenierías
Articles

Evaluation of the corrosion resistance of an additive manufacturing steel using electrochemical techniques

Dayi Gilberto Agredo-Diaz
Universidad Nacional de Colombia
Arturo Barba-Pingarrón
Universidad Nacional Autónoma de México
Nicolas Ortiz-Godoy
Universidad Nacional de Colombia
Jesús Rafael González-Parra
Universidad Nacional Autónoma de México
Jhon Jairo Olaya-Florez
Universidad Nacional de Colombia
José Javier Cervantes-Cabello
Universidad Nacional Autónoma de México
Cesar Armando Ortiz-Otalora
Universidad Pedagógica y Tecnológica de Colombia

Published 2020-09-06

Keywords

  • additive manufacturing,
  • electrochemical impedance,
  • electrochemical noise,
  • low carbon steel,
  • scanning electron microscopy

How to Cite

Agredo-Diaz, D. G., Barba-Pingarrón, A., Ortiz-Godoy, N., González-Parra, J. R., Olaya-Florez, J. J., Cervantes-Cabello, J. J., & Ortiz-Otalora, C. A. (2020). Evaluation of the corrosion resistance of an additive manufacturing steel using electrochemical techniques. Revista UIS Ingenierías, 19(4), 213–222. https://doi.org/10.18273/revuin.v19n4-2020018

Abstract

Additive metal manufacturing has undergone a revolution in recent years, being able to be incorporated in several industries such as aeronautics, automotive and even in medicine, allowing the manufacture of complex parts with fewer steps in the process, which translates in material savings and cost reduction. In this work, the corrosion of low carbon steel obtained by depositing consecutive layers is carried out, using electrochemical impedance spectroscopy and electrochemical noise immersed in a 0.1 M NaCl solution, establishing a comparison between the metal of contribution and deposited material. The layers of the material are characterized microstructurally and mechanically using scanning electron microscopy and Vickers microhardness. Overall, the results show a good response of the material to the action of the electrolyte after the immersion time, on the other hand, the microstructural results allow identifying the formation of 3 zones due to the cooling of the material. The microhardness of the steel does not show great changes between the zones, however, there is a slight increase in the intermediate zone due to the reduction in grain size. These studies allow researchers to know the behavior of these materials in applications that require contact with corrosive solutions of this nature.

Downloads

Download data is not yet available.

References

[1] A. Hadadzadeh, B. S. Amirkhiz, J. Li, M. Mohammadi, “Microstructure Evolution in Direct Metal Laser Sintered Corrax Maraging Stainless Steel,” in TMS 2019 148th Annual Meeting & Exhibition Supplemental Proceedings, 2019, pp. 455-462, doi: 10.1007/978-3-030-05861-6_42

[2] J. J. Cervantes C et al., “Desarrollo de un proceso de manufactura aditiva (AM) de metal y determinación de propiedades de las piezas obtenidas,” in XXIV congreso internacional anual de la SOMIM, 2018, pp. 20-27.

[3] V. Thampy et al., “Subsurface Cooling Rates and Microstructural Response during Laser Based Metal Additive Manufacturing,” Sci. Rep., vol. 10, no. 1, pp. 1-9, 2020, doi: 10.1038/s41598-020-58598-z

[4] C. J. Todaro et al., “Grain structure control during metal 3D printing by high-intensity ultrasound,” Nat. Commun., vol. 11, no. 1, pp. 1-9, 2020, doi: 10.1038/s41467-019-13874-z

[5] D. Jia, F. Li, Y. Zhang, “3D-printing process design of lattice compressor impeller based on residual stress and deformation,” Sci. Rep., vol. 10, no. 1, pp. 1-11, 2020, doi: 10.1038/s41598-019-57131-1

[6] B. Zhu, J. Xiong, “Increasing deposition height stability in robotic GTA additive manufacturing based on arc voltage sensing and control,” Robot. Comput. Integr. Manuf., vol. 65, pp. 101977, 2020, doi: 10.1016/j.rcim.2020.101977

[7] T. Duda, L. V. Raghavan, “3D Metal Printing Technology,” IFAC-PapersOnLine, vol. 49, no. 29, pp. 103-110, 2016, doi: 10.1016/j.ifacol.2016.11.111

[8] D. G. Agredo-Diaz et al., “Effect of a Ni-P coating on the corrosion resistance of an additive manufacturing carbon steel immersed in a 0.1 M NaCl solution,” Mater. Lett., vol. 275, pp. 128-159, 2020, doi: 10.1016/j.matlet.2020.128159

[9] X. Zhang et al., “Microstructure and mechanical properties of TOP-TIG-wire and arc additive manufactured super duplex stainless steel (ER2594),” Mater. Sci. Eng. A, vol. 762, pp. 138097, 2019, doi: 10.1016/j.msea.2019.138097

[10] Z. Liu et al., “Corrosion and high-temperature tribological behavior of carbon steel claddings by additive manufacturing technology,” Surf. Coatings Technol., vol. 384, pp. 125325, 2020, doi: 10.1016/j.surfcoat.2019.125325.

[11] ASTM, Electrochemical corrosion testing. San Francisco: American Society for Testing and Materials, 1979, www.astm.org.

[12] F. Di Turo, R. Parra, J. Piquero-Cilla, G. Favero, A. Doménech-Carbó, “Crossing VIMP and EIS for studying heterogeneous sets of copper/bronze coins,” J. Solid State Electrochem., vol. 23, no. 3, pp. 771-781, 2019, doi: 10.1007/s10008-018-04182-5

[13] U. P. Morales, Á. M. Camargo, J. J. O. Flórez, “Impedancia electroquímica-interpretación de diagramas típicos con circuitos equivalentes,” DYNA, vol. 77, no. 164, pp. 69-75, 2010.

[14] A. Huber et al., “La espectroscopía de impedancia electroquímica (EIS) aplicada al estudio del mecanismo de la corrosión en caliente por sales fundidas,” Dyna, vol. 71, no. 144, pp. 39-47, 2004.

[15] R. Cabrera-Sierra, J. Marín-Cruz, I. González, “Comunicaciones técnicas,” Bol. Soc. Quím. Méx, vol. 1, no. 1, pp. 32-41, 2007.

[16] M. Saavedra, “Simulación mediante circuitos equivalentes de la impedancia electroquímica de armaduras de acero inoxidable en mortero,” thesis, Universidad Carlos III de Madrid, 2014.

[17] J. Malo-Tamayo, J. Uruchurtu-Chavarín, “La técnica de ruido electroquímico para el estudio de la corrosión,” Instituto de Investigaciones Eléctricas. México, 2002.

[18] S. L. García-Zarco, V. A. Pérez, A. S. García, S. U. Madriñán, Á. S. Bermúdez, “Aplicación de la técnica de ruido electroquímico al estudio de pinturas comerciales de efecto barrera,” Rev. Metal., vol. 51, no. 1, pp. 1-8, 2015, doi: 10.3989/revmetalm.039

[19] J. L. Tristancho, S. Báez, D. Y. Peña, C. Vásquez, “Aplicación de la técnica de ruido electroquímico para la evaluación de la corrosión en caliente por sales fundidas,” Dyna, vol. 71, no. 144, pp. 85-92, 2004.

[20] C. A. Loto, “Electrochemical noise measurement technique in corrosion research,” Int. J. Electrochem. Sci., vol. 7, no. 10, pp. 9248-9270, 2012.

[21] D. Escobar, “Estudio de la corrosión mediante la técnica de ruido electroquímico,” Rev ION, vol. 15, no. 1, pp. 13-23, 1998.

[22] J. Kearns, D. Eden, M. Yaffe, J. Fahey, D. Reichert, D. Silverman, “ASTM Standardization of Electrochemical Noise Measurement,” in Electrochem. Noise Meas. Corros. Appl., 2009, pp. 446-470, doi: 10.1520/stp37976s

[23] J. Ma, J. Wen, Q. Li, “Electrochemical noise analysis of the corrosion behaviors of Al-Zn-In based alloy in NaCl solution,” Phys. Procedia, vol. 50, no. October, pp. 421-426, 2013, doi: 10.1016/j.phpro.2013.11.065

[24] F. Mansfeld, H. Xiao, “Electrochemical Noise and Impedance Analysis of Iron in Chloride Media,” in Electrochem. Noise Meas. Corros. Appl., 2009, pp. 59-78, doi: 10.1520/stp37951s

[25] J. R. Kearns, J. R. Scully, P. R. Roberge, D. L. Reichert, J. L. Dawson, Electrochemical Noise Measurement for Corrosion Applications, vol. 100, pp. 19428-2959, 1996, doi: 10.1520/stp1277-eb

[26] C. A. Loto, “Electrochemical noise measurement and statistical parameters evaluation of stressed α-brass in Mattsson’s solution,” Alexandria Eng. J., vol. 57, no. 1, pp. 483-490, 2018, doi: 10.1016/j.aej.2016.12.012

[27] C. A. Loto, R. A. Cottis, “Electrochemical noise generation during stress corrosion cracking of the high-strength aluminum AA 7075-T6 alloy,” Corrosion, vol. 45, no. 2, pp. 136-141, 1989, doi: 10.5006/1.3577831

[28] D. Mills, P. Picton, L. Mularczyk, “Developments in the electrochemical noise method (ENM) to make it more practical for assessment of anti-corrosive coatings,” Electrochim. Acta, vol. 124, pp. 199-205, 2014, doi: 10.1016/j.electacta.2013.09.067

[29] G199-09, “Standard Guide for Electrochemical Noise Measurement,” ASTM B. Stand., vol. 09, pp. 1-9, 2014, doi: 10.1520/G0199-09R14.2

[30] D. H. Xia, S. Z. Song, Y. Behnamian, “Detection of corrosion degradation using electrochemical noise (EN): review of signal processing methods for identifying corrosion forms,” Corros. Eng. Sci. Technol., vol. 51, no. 7, pp. 527-544, 2016, doi: 10.1179/1743278215Y.0000000057

[31] ASTM International, “ASTM E3.34776 Stardard Guide for Preparation of metallographic specimens,” ASTM Stand., vol. 11, 2017, pp. 1-17, 2017, doi: 10.1520/E0003-11R17.1

[32] Electrodos Infra, “Ficha técnica: Microalambre sólido infra welding wire 70S-6.” ElectrodosInfra, pp. 1-2, 2018.

[33] J. S. Zuback, T. DebRoy, “The hardness of additively manufactured alloys,” Materials (Basel)., vol. 11, no. 11, 2018, doi: 10.3390/ma11112070

[34] S. Y. Tarasov, A. V. Filippov, N. N. Shamarin, S. V. Fortuna, G. G. Maier, E. A. Kolubaev, “Microstructural evolution and chemical corrosion of electron beam wire-feed additively manufactured AISI 304 stainless steel,” J. Alloys Compd., vol. 803, pp. 364-370, 2019, doi: 10.1016/j.jallcom.2019.06.246

[35] F. Franco, J. H. Paz, “Tratamiento Térmico de Aceros de Bajo Carbono en Horno de Atmósfera Controlada,” Ing. y Compet., vol. 6, no. 2, pp. 56-63, 2004, doi: 10.25100/iyc.v6i2.2278

[36] H. Saarivirta, P. Rajala, L. Carpén, “Corrosion behaviour of copper under biotic and abiotic conditions in anoxic ground water : electrochemical study,” Electrochim. Acta, vol. 203, pp. 350-365, 2016, doi: 10.1016/j.electacta.2016.01.098

[37] B. Wu, Z. Pan, S. Li, D. Cuiuri, D. Ding, H. Li, “The anisotropic corrosion behavior of wire arc additive manufactured Ti-6Al-4V alloy in 3.5% NaCl solution,” Corros. Sci., vol. 137, pp. 176-183, 2018, doi: 10.1016/j.corsci.2018.03.047

[38] J. J. Arenas, M.A., Niklas, A., Conde, A., Méndez, S., Sertucha, J., de Damborenea, “Comportamiento frente a la corrosión de fundiciones con grafito laminar y esferoidal parcialmente modificadas con silicio en NaCl 0,03 M,” Rev. Metal., vol. 50, no. 4, pp. e032, 2014, doi: 10.3989/revmetalm.032

[39] X. Wen, P. Bai, B. Luo, S. Zheng, C. Chen, “Review of recent progress in the study of corrosion products of steels in a hydrogen sulphide environment,” Corros. Sci., vol. 139, no. may, pp. 124-140, 2018, doi: 10.1016/j.corsci.2018.05.002

[40] L. N. Zhang, O. A. Ojo, “Corrosion behavior of wire arc additive manufactured Inconel 718 superalloy,” J. Alloys Compd., vol. 829, pp. 154455, 2020, doi: 10.1016/j.jallcom.2020.154455

[41] T. Zhang et al., “Corrosion of pure magnesium under thin electrolyte layers,” Electrochim. Acta, vol. 53, no. 27, pp. 7921-7931, 2008, doi: 10.1016/j.electacta.2008.05.074.

[42] D. X. Wen, P. Long, J. J. Li, L. Huang, Z. Z. Zheng, “Effects of linear heat input on microstructure and corrosion behavior of an austenitic stainless steel processed by wire arc additive manufacturing,” Vacuum, vol. 173, no. December, 2019, pp. 109-131, 2020. doi: 10.1016/j.vacuum.2019.109131

[43] I. R. Alvaraz. J. L. Gómez-Pascual, “Caracterización de productos de corrosión del acero al bajo carbono en atmósferas contaminadas por compuestos de azufre,” Ing. y Tecnol., vol. IX, pp. 160-170, 2016.

[44] D. G. Agredo Diaz et al., “Caracterización electroquímica de recubrimientos Zn-Al sobre fundición nodular grado 2, obtenidos por proyección térmica por flama con alambre,” Av. Investig. en Ing., vol. 17, no. 1, 2020, doi:10.18041/1794-4953/avances.1.5747