Asphalt emulsion as an alternative to reduce the presence of efflorescence in glue mortars
Published 2020-11-03
Keywords
- bituminous additive,
- efflorescence,
- hydrophobicity,
- masonry,
- glue mortar
How to Cite
Copyright (c) 2020 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The function of glue mortars is to integrate masonry in rubble work, however, these elements are constantly affected by injuries derived from humidity, such as efflorescence that causes loss of physical properties like the color, the density and the mass due to the superficial outcrop of salts, internal accumulation of salts and superficial detachments; therefore, in this research, the use of asphalt emulsion as a reducer of this condition was studied. According to the analyzes carried out, it was determined that with additions of 10% and 20% the asphalt emulsion a certain level of water repellency is acquired and with additions of 30% and 40% complete hydrophobicity was achieved. Furthermore, it was determined that the asphalt emulsion reduces efflorescence outcrop by 27% with 10% emulsion, 47% with 20% and 100% for samples with 30% and 40% respectively. Although the use of bituminous additives brings certain advantages over the physical properties of mortars, it inversely reduces mechanical properties such as compressive strength.
Downloads
References
[2] H. Brocken, T. Nijland, “White efflorescence on brick masonry and concrete masonry blocks, with special emphasis on sulfate efflorescence on concrete blocks”, Constr. Build. Mater., vol. 18, no. 5, pp. 315-323, 2004, doi: 10.1016/j.conbuildmat.2004.02.004
[3] J. Rincón, M. Romero, “Fundamentos y clasificación de las eflorescencias en ladrillos de construcción”, Mater. Constr., vol. 2000, no. 260, pp. 63-69, 2000.
[4] J. Carrio, Patología de cerramientos y acabados arquitectónicos (2a ed.) (Nueva edición adaptada al código técnico de la edificación). Madrid, España: Munillaleria, 1997.
[5] L. Pel, H. Huinink, K. Kopinga, R. Van Hees, C. Adan, “Efflorescence pathway diagram: Understanding salt weathering”, Constr. Build. Mater., vol. 18, no. 5, pp. 309-313, 2004, doi: 10.1016/j.conbuildmat.2004.02.003
[6] E. Alkhateeb, “Salts Efflorescence in the Old City of Damascus ; Problem Analysis and Salts Efflorescence in the Old City of Damascus; Problem Analysis and Possible Solutions”, Bauforschung und Baupraxis, From Research to Practice in Construction, 2016, pp. 1-9.
[7] R. Flatt, N. Mohamed, F. Caruso, D. Francesco, H. Derluyn, J. Desarnaud, B. Lubelli, R. Espinosa-Marzal, L. Pel, C. Rodriguez-Navarro, G. Scherer, “Predicting salt damage in practice: A theoretical insight into laboratory tests”, RILEM Tech. Lett., vol. 2, no. Dic, pp. 108-118, 2017.
[8] D. Sánchez Guzmán, Durabilidad y patología del concreto - segunda edición. Bogotá: Asocreto, 2011.
[9] E. Granau, Lesiones en los edificios, sintomas, causas y reparación. Barcelona, España: Ceac, S.A, 2003.
[10] C. Groot, J. Gunneweg, “Water permeance problems in single wythe masonry walls: The case of wind mills”, Constr. Build. Mater., vol. 18, no. 5, pp. 325-329, 2004, doi: 10.1016/j.conbuildmat.2004.02.005
[11] I. Ginchitskaia, G. Yakovleva, O. Kizinievichb, I. Polyanskikha, G. Pervushina, P. Taybakhtinaa, I. Balobanova. “Damage to Polymer Coating on Facing Brick Surface in Operated Buildings”, Procedia Eng., vol. 195, pp. 189-196, 2017, doi: 10.1016/j.proeng.2017.04.543
[12] B. Lubelli, R. Van Hees, H. Brocken, “Experimental research on hygroscopic behaviour of porous specimens contaminated with salts”, Constr. Build. Mater., vol. 18, no. 5, pp. 339-348, 2004, doi: 10.1016/j.conbuildmat.2004.02.007
[13] J. Chwast, J. Todorović, H. Janssen, J. Elsen, “Gypsum efflorescence on clay brick masonry: Field survey and literature study”, Constr. Build. Mater., vol. 85, pp. 57-64, 2015, doi: 10.1016/j.conbuildmat.2015.02.094
[14] H. Morillas, M. Maguregui, J. Trebolazabala, J. M. Madariaga, “Nature and origin of white efflorescence on bricks, artificial stones, and joint mortars of modern houses evaluated by portable Raman spectroscopy and laboratory analyses”, Spectrochim. Acta - Part A Mol. Biomol. Spectrosc., vol. 136, no. PB, pp. 1195-1203, 2015, doi: 10.1016/j.saa.2014.10.006
[15] G. Cultrone, E. Sebastián, “Laboratory simulation showing the influence of salt efflorescence on the weathering of composite building materials”, Environ. Geol., vol. 56, pp. 729-740, 2008, doi: 10.1007/s00254-008-1332-y
[16] E. Schild, R. Oswald, D. Rogier, V. Schnapauff, Estanqueidad e impermeabilización en la edificación, Prevención de defectos en azoteas, terrazas y balcones, Tomo 1. Barcelona, España: Técnicos asociados, S. A., 1978.
[17] A. Ferrer Morales, La pintura mural: su soporte, conservación, restauración y las técnicas modernas, 2nd ed. Sevilla, España: Universidad de Sevilla, 1998.
[18] E. Zanni, Construction Pathology and restoration of architecture works. Córdoba, Argentina: ZANNI, 2008.
[19] C. Broto, V. Soria, Enciclopedia Broto de patologías de la construcción, Volumen 6, Structure. Madrid: España: Links International, 2005.
[20] P. Collado, Control de ejecución de tabiquerías y cerramientos, 1st ed. España: Lex Nova, 2005.
[21] E. Adam, A. Agib, Compressed Stabilised Earth Block Manufacture in Sudan. United Nations Educ. Sci. Cult. Organ., France, 2001.
[22] H. Cañola, C. Echavarria, “Bloques de concreto con aditivos bituminosos para sobrecimiento, Concrete blocks with bitumen emulsion for foundation walls”, Ing. y Desarro., vol. 35, no. 2, pp. 491-512, 2017.
[23] H. Cañola, A. Builes-jaramillo, C. Medina, G. González-Castañeda, “Bloques de Tierra Comprimida (BTC) con aditivos bituminosos bitumen emulsion”, TecnoLógicas, vol. 21, no. 43, pp. 135-145, 2018, doi: 10.22430/22565337.1061
[24] H. Cañola, C. Echavarría, “Concrete blocks with paraffin wax,” Lámpsakos, no. 17, pp. 14-19, 2017.
[25] J. Piaia, M. Cheriaf, J. Rocha, N. Mustelier, “Measurements of water penetration and leakage in masonry wall: Experimental results and numerical simulation”, Build. Environ., vol. 61, pp. 18-26, 2013, doi: 10.1016/j.buildenv.2012.11.017
[26] ASTM, Standard test method for particle - Size analysis of soils, ASTM D 422, 2007.
[27] J. Ojeda, Métodos de microscopia electrónica de barrido en biología, 1st ed. Cantanbria, España: Universidad de Cantabria, 1997.
[28] Durabilidad del hormigón. Determinación de agua por capilaridad del hormigón endurecido, Método Fagerlund, UNE PrUNE 83.982, 2007.
[29] ASTM, Standard test method for measurement of rate of absorption of water by hydraulic- cement concretes, ASTM C 1585-04, 2007.
[30] RILEM, “Absorption of water by concrete by capillarity”, CPC 11.2, 1982.
[31] ASTM, Compressive Strength of Hydraulic Cement Mortars (Using 2-in. or [50-mm] Cube Specimens), ASTM C 109, 2009.
[32] ASTM, Standard Test Method for Pulse Velocity Through Concrete, ASTM C597 – 16, 2018.
[33] ASTM, Testing of Brick and Structural Clay Tile, ASTM C67, 2007.
[34] J. Lee, T. Shields, H. Ahn, “Performance Evaluation of Seal Coat Materials and Designs”, JTRP Technical Reports, West Lafayette, Indiana, 2011, doi: 10.5703/1288284314619
[35] J. C. Pino, B. Fienco, M. Álvarez, G. Parrales, A. Macías, F. Ponce, Materiales de la construcción, 1st ed. Ecuador: Editorial Científica 3Ciencias, 2018.
[36] C. Zürcher y T. Frank, Physique du bâtiment: construction et énergie, 1st ed. Zürich, Alemania: vdf Hochschulvlg, 2014.
[37] H. Cañola, J. Pérez, A. Builes-Jaramillo, “Análisis patológico de la obra mural del maestro Ramón Vásquez en la ciudad de Medellín Colombia”, en Euro-American Congress REHABEND, 2016, pp. 693-701.
[38] ASTM, Standard Specification for Mortar for Unit Masonry, ASTM C70 – 07, 2013.