Vol. 20 No. 3 (2021): Revista UIS Ingenierías
Articles

Review of energy efficiency and sustainability measures in the cement industry worldwide

Carlos Esteban Aristizabal-Alzate
Instituto Tecnológico Metropolitano de Medellín
José González-Manosalva
Instituto Tecnológico Metropolitano de Medellín

Published 2021-05-10

Keywords

  • cement industry,
  • alternative fuels,
  • clinker manufacturing,
  • energy efficiency,
  • energy recovery,
  • GHG
  • ...More
    Less

How to Cite

Aristizabal-Alzate, C. E., & González-Manosalva, J. (2021). Review of energy efficiency and sustainability measures in the cement industry worldwide. Revista UIS Ingenierías, 20(3), 91–110. https://doi.org/10.18273/revuin.v20n3-2021006

Abstract

This article provides a bibliographic review of the measures that can be taken within the cement production industry. This to make rational and efficient consumption of the energy resources demanded, and at the same time improve sustainability indicators thanks to the reduction in the emission of pollutants and GHGs. The review begins with the characterization of this industry at a global level; specific consumption, processes, equipment, and raw materials, to establish in which stages of the process there are opportunities for improvement in energy consumption. Afterward, the energy efficiency measures of the macro-consuming equipment are described, such as the clinker production furnace. Finally, possible substitutes to conventionally used fossil fuels and technologies that take advantage of renewable energies are shown, to seek an efficient and sustainable industry.

Downloads

Download data is not yet available.

References

[1] S. Licht et al., “STEP cement: Solar Thermal Electrochemical Production of CaO without CO2 emission,” Chem. Commun., 2012, doi: 10.1039/c2cc31341c

[2] N. A. Madlool, R. Saidur, N. A. Rahim, M. Kamalisarvestani, “An overview of energy savings measures for cement industries,” Renew. Sustain. Energy Rev., vol. 19, pp. 18–29, 2013, doi: 10.1016/j.rser.2012.10.046

[3] N. A. Madlool, R. Saidur, M. S. Hossain, N. A. Rahim, “A critical review on energy use and savings in the cement industries,” Renew. Sustain. Energy Rev., vol. 15, no. 4, pp. 2042–2060, 2011, doi: 10.1016/j.rser.2011.01.005

[4] J. Liu, S. Zhang, F. Wagner, “Exploring the driving forces of energy consumption and environmental pollution in China ’ s cement industry at the provincial level,” J. Clean. Prod., vol. 184, pp. 274–285, 2018, doi: 10.1016/j.jclepro.2018.02.277

[5] D. L. Summerbell, C. Y. Barlow, J. M. Cullen, “Potential reduction of carbon emissions by performance improvement : A cement industry case study,” J. Clean. Prod., vol. 135, pp. 1327–1339, 2016, doi: 10.1016/j.jclepro.2016.06.155

[6] L. Zhang, W. E. Mabee, “Comparative study on the life-cycle greenhouse gas emissions of the utilization of potential low carbon fuels for the cement industry,” J. Clean. Prod., vol. 122, pp. 102–112, 2016, doi: 10.1016/j.jclepro.2016.02.019

[7] S. A. Ishak, H. Hashim, T. S. Ting, “Eco innovation strategies for promoting cleaner cement manufacturing,” J. Clean. Prod., vol. 136, pp. 133–149, 2016, doi: 10.1016/j.jclepro.2016.06.022

[8] G. Tesema, E. Worrell, “Energy efficiency improvement potentials for the cement industry in Ethiopia,” Energy, vol. 93, pp. 2042–2052, 2015, doi: 10.1016/j.energy.2015.10.057

[9] K. H. Karstensen, C. J. Engelsen, S. Ng, P. K. Saha, M. N. Malmedal, “Cement Manufacturing and Air Quality,” vol. 73, pp. 683–705, 2016

[10] S. Berriel, Y. Díaz, H. J.F.M, H. G, “Assessment of Sustainability of Low Carbon Cement in Cuba . Cement Pilot Production and Prospective Case,” Calcined Clays Sustain. Concr., vol. RILEM Book, no. 10, pp. 189–194, 2015, doi: 10.1007/978-94-017-9939-3

[11] UPME, “Ahorro de energía en la industria del cemento,” 2013. [Online]. Available: http://www.si3ea.gov.co/Portals/0/Gie/Procesos/cemento.pdf.

[12] J. C. Brunke, M. Blesl, “Energy conservation measures for the German cement industry and their ability to compensate for rising energy-related production costs,” J. Clean. Prod., vol. 82, pp. 94–111, 2014, doi: 10.1016/j.jclepro.2014.06.074

[13] D. Song, “Extended Exergy Accounting For Energy Consumption and CO2 Emissions of Cement Industry—A Basic Framework,” Energy Procedia, vol. 88, pp. 305–308, 2016, doi: 10.1016/j.egypro.2016.06.145

[14] C. A. Tsiliyannis, “Cement manufacturing using alternative fuels : Enhanced productivity and environmental compliance via oxygen enrichment,” Energy, vol. 113, pp. 1202–1218, 2016, doi: 10.1016/j.energy.2016.07.082

[15] Scopus, “Scopus - Analyze search results.” 2020.

[16] S. Zhang, H. Ren, W. Zhou, Y. Yu, T. Ma, C. Chen, “Assessing air pollution abatement co-benefits of energy efficiency improvement in cement industry: A city level analysis,” J. Clean. Prod., 2018, doi: 10.1016/j.jclepro.2018.02.293

[17] B. Herrera et al., “Use of thermal energy and analysis of barriers to the implementation of thermal ef fi ciency measures in cement production : Exploratory study in Colombia,” Energy, vol. 140, pp. 1047–1058, 2017.

[18] FICEM, “Informe Estadístico 2013,” Bogotá D.C, 2013. [Online]. Available: http://www.ficem.org/estadisticas/informe_estadistico_2013.pdf.

[19] C. Gacía Arbelaéz, G. Vallejo, M. Lou Higgins, And E. M. Escobar, El Acuerdo De París Así Actuará Colombia Frente Al Cambio Climático. 2016.

[20] W. Bulege, “COP 21: Acuerdo contra el cambio climático en Paris,” Apunt. cienc. soc. 2015;, vol. 05, no. 02, pp. 186–187, 2015, doi: 10.18259/acs.2015027

[21] J. J. Fierro, A. Escudero-Atehortua, C. Nieto-Londoño, M. Giraldo, H. Jouhara, L. C. Wrobel, “Evaluation of waste heat recovery technologies for the cement industry,” Int. J. Thermofluids, vol. 7–8, 2020, doi: 10.1016/j.ijft.2020.100040

[22] D. Garcıa, D. Garraı, “Life cycle assessment of the Spanish cement industry : implementation of environmental-friendly solutions,” Clean Techn Env. Policy, vol. 17, pp. 59–73, 2015, doi: 10.1007/s10098-014-0757-0

[23] S.-Y. Huh, H. Lee, J. Shin, D. Lee, J. Jang, “Inter-fuel substitution path analysis of the korea cement industry,” Renew. Sustain. Energy Rev., vol. 82, pp. 4091–4099, 2018, doi: 10.1016/j.rser.2017.10.065

[24] S. R. Hossain, I. Ahmed, F. S. Azad, A. S. M. Monjurul Hasan, “Empirical investigation of energy management practices in cement industries of Bangladesh,” Energy, vol. 212, p. 118741, 2020, doi: 10.1016/j.energy.2020.118741

[25] C.-Y. Zhang, R. Han, B. Yu, Y.-M. Wei, “Accounting process-related CO 2 emissions from global cement production under Shared Socioeconomic Pathways,” J. Clean. Prod., vol. 184, pp. 451–465, 2018, doi: 10.1016/j.jclepro.2018.02.284

[26] M. J. S. Zuberi, M. K. Patel, “Bottom-up analysis of energy ef fi ciency improvement and CO2 emission reduction potentials in the Swiss cement industry,” J. Clean. Prod., vol. 142, pp. 4294–4309, 2017, doi: 10.1016/j.jclepro.2016.11.178

[27] B. Afkhami, B. Akbarian, N. Beheshti A., A. H. Kakaee, B. Shabani, “Energy consumption assessment in a cement production plant,” Sustain. Energy Technol. Assessments, vol. 10, pp. 84–89, 2015, doi: 10.1016/j.seta.2015.03.003

[28] S. Fellaou, T. Bounahmidi, “Analyzing thermodynamic improvement potential of a selected cement manufacturing process: Advanced exergy analysis,” Energy, vol. 154, pp. 190–200, 2018, doi: 10.1016/j.energy.2018.04.121

[29] M. Huang et al., “Evaluation of oil sludge as an alternative fuel in the production of Portland cement clinker,” vol. 152, pp. 226–231, 2017, doi: 10.1016/j.conbuildmat.2017.06.157

[30] S. A. Miller, F. C. Moore, “Climate and health damages from global concrete production,” Nat. Clim. Chang., vol. 10, no. 5, pp. 439–443, 2020, doi: 10.1038/s41558-020-0733-0

[31] F. S. Hashem, T. A. Razek, H. A. Mashout, “Rubber and plastic wastes as alternative refused fuel in cement industry,” Constr. Build. Mater., vol. 212, pp. 275–282, 2019, doi: 10.1016/j.conbuildmat.2019.03.316

[32] A. Mokhtar, M. Nasooti, “A decision support tool for cement industry to select energy efficiency measures,” Energy Strateg. Rev., vol. 28, no. November 2016, p. 100458, 2020, doi: 10.1016/j.esr.2020.100458

[33] S. Karellas, A. Leontaritis, G. Panousis, E. Bellos, E. Kakaras, “Energetic and exergetic analysis of waste heat recovery systems in the cement industry,” Energy, vol. 58, pp. 147–156, 2013, doi: 10.1016/j.energy.2013.03.097

[34] A. Atmaca, R. Yumrutaş, “Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry,” Appl. Therm. Eng., vol. 66, no. 1–2, pp. 435–444, 2014, doi: 10.1016/j.applthermaleng.2014.02.038

[35] Z. Wen, M. Chen, F. Meng, “Evaluation of energy saving potential in China’s cement industry using the Asian-Pacific Integrated Model and the technology promotion policy analysis,” Energy Policy, vol. 77, pp. 227–237, 2015, doi: 10.1016/j.enpol.2014.11.030

[36] S. Fellaou, T. Bounahmidi, “Evaluation of energy efficiency opportunities of a typical Moroccan cement plant : Part I . Energy analysis,” Appl. Therm. Eng., vol. 115, pp. 1161–1172, 2017, doi: 10.1016/j.applthermaleng.2017.01.010

[37] A. Talaei, D. Pier, A. V. Iyer, M. Ahiduzzaman, A. Kumar, “Assessment of long-term energy efficiency improvement and greenhouse gas emissions mitigation options for the cement industry,” Energy, vol. 170, pp. 1051–1066, 2019, doi: 10.1016/j.energy.2018.12.088

[38] A. Atmaca, R. Yumrutas, “Analysis of the parameters affecting energy consumption of a rotary kiln in cement industry,” Appl. Therm. Eng., vol. 66, 2014, doi: 10.1016/j.applthermaleng.2014.02.038

[39] Y.-H. Huang, Y.-L. Chang, T. Fleiter, “A critical analysis of energy efficiency improvement potentials in Taiwan’s cement industry,” Energy Policy, vol. 96, pp. 14–26, 2016, doi: 10.1016/j.enpol.2016.05.025

[40] W. R. Morrow III, A. Hasanbeigi, J. Sathaye, T. Xu, “Assessment of energy efficiency improvement and CO2 emission reduction potentials in India’s cement and iron & steel industries,” J. Clean. Prod., vol. 65, pp. 131–141, 2014, doi: 10.1016/j.jclepro.2013.07.022

[41] Höganäs Bjuf Refractories, “Refractories for the cement industry Kiln Höganäs Bjuf Refractories,” Bjuv, , 2016. Accessed: Dec. 09, 2016. [Online]. Available: http://cement.hoganasbjuf.com/en/Knowledge/~/media/Files/HoganasBjufCement/Downloads/HEA_handbook_kiln_magnus_v1_screen.pdf.

[42] K. T. Kaddatz, M. G. Rasul, A. Rahman, “Alternative fuels for use in cement kilns: Process impact modelling,” Procedia Eng., vol. 56, pp. 413–420, 2013, doi: 10.1016/j.proeng.2013.03.141

[43] A. Mittal, D. Rakshit, “Energy audit and waste heat recovery from kiln hot shell surface of a cement plant,” Therm. Sci. Eng. Prog., vol. 19, no. January, p. 100599, 2020, doi: 10.1016/j.tsep.2020.100599

[44] A. Mittal, D. Rakshit, “Utilization of cement rotary kiln waste heat for calcination of phosphogypsum,” Therm. Sci. Eng. Prog., vol. 20, no. September, p. 100729, 2020, doi: 10.1016/j.tsep.2020.100729

[45] V. Alcántara et al., “A study case of energy efficiency , energy profile , and technological gap of combustion systems in the Colombian lime industry,” vol. 128, pp. 393–401, 2018.

[46] E. Commission, “Reference Document on Best Available Techniques in Cement , Lime and Magnesium Oxide Manufacturing Industries,” no. May, 2010.

[47] A. Hasanbeigi, W. Morrow, E. Masanet, J. Sathaye, and T. Xu, “Energy efficiency improvement and CO 2 emission reduction opportunities in the cement industry in China,” Energy Policy, vol. 57, pp. 287–297, 2013, doi: 10.1016/j.enpol.2013.01.053

[48] E. Benhelal, G. Zahedi, E. Shamsaei, A. Bahadori, “Global strategies and potentials to curb CO2 emissions in cement industry,” J. Clean. Prod., vol. 51, pp. 142–161, 2013, doi: 10.1016/j.jclepro.2012.10.049

[49] R. Loni, G. Najafi, E. Bellos, F. Rajaee, Z. Said, and M. Mazlan, “A review of industrial waste heat recovery system for power generation with Organic Rankine Cycle: Recent challenges and future outlook,” J. Clean. Prod., vol. 287, 2021, doi: 10.1016/j.jclepro.2020.125070

[50] P. Strother, Manufacture of Portland Cement, 5th ed. Elsevier Ltd., 2019.

[51] T. Harrison, M. R. Jones, and D. Lawrence, The Production of Low Energy Cements, 5th ed. Elsevier Ltd., 2019.

[52] M. Georgiopoulou, G. Lyberatos, “Life cycle assessment of the use of alternative fuels in cement kilns : A case study,” J. Environ. Manage., pp. 1–11, 2018, doi: 10.1016/j.jenvman.2017.07.017

[53] P. V Nidheesh and M. S. Kumar, An overview of environmental sustainability in cement and steel production. Elsevier B.V., 2019.

[54] H. Mikulčić, J. J. Klemeš, M. Vujanović, K. Urbaniec, N. Duić, “Reducing greenhouse gasses emissions by fostering the deployment of alternative raw materials and energy sources in the cleaner cement manufacturing process,” J. Clean. Prod., vol. 136, pp. 119–132, 2016, doi: 10.1016/j.jclepro.2016.04.145

[55] A. L. H. R. El-Salamony, H. M. Mahmoud, N. Shehata, “Enhancing the efficiency of a cement plant kiln using modified alternative fuel,” Environ. Nanotechnology, Monit. Manag., vol. 14, no. December 2019, 2020, doi: 10.1016/j.enmm.2020.100310

[56] A. Tsiligiannis, C. Tsiliyannis, “Renewable energy in cement manufacturing : A quantitative assessment of energy and environmental efficiency of food residue biofuels,” Renew. Sustain. Energy Rev., vol. 107, no. February, pp. 568–586, 2019, doi: 10.1016/j.rser.2019.03.009

[57] C. E. Aristizábal-alzate, J. L. González-manosalva, “Effectiveness analysis of the ITM environmental programs : saving and efficient use of electric energy and water , and comprehensive solid waste management . A case study,” DYNA, vol. 85, no. 207, pp. 36–43, 2018, doi: http://doi.org/10.15446/dyna.v85n207.69309

[58] C. Horsley, M. H. Emmert, A. Sakulich, “Influence of alternative fuels on trace element content of ordinary portland cement,” Fuel, vol. 184, pp. 481–489, 2016, doi: 10.1016/j.fuel.2016.07.038

[59] A. C. ( Thanos, ) Bourtsalas, J. Zhang, M. J. Castaldi, N. J. Themelis, “Use of non-recycled plastics and paper as alternative fuel in cement production,” J. Clean. Prod., vol. 181, pp. 8–16, 2018, doi: 10.1016/j.jclepro.2018.01.214

[60] F. Rezaee, S. Danesh, M. Tavakkolizadeh, “Investigating chemical , physical and mechanical properties of eco-cement produced using dry sewage sludge and traditional raw materials,” J. Clean. Prod., vol. 214, pp. 749–757, 2019, doi: 10.1016/j.jclepro.2018.12.153

[61] F. S. Hashem, T. A. Razek, H. A. Mashout, “Rubber and plastic wastes as alternative refused fuel in cement industry,” Constr. Build. Mater., vol. 212, pp. 275–282, 2019, doi: 10.1016/j.conbuildmat.2019.03.316

[62] A. Tsiligiannis, C. Tsiliyannis, “Renewable energy in cement manufacturing: A quantitative assessment of energy and environmental efficiency of food residue biofuels,” Renew. Sustain. Energy Rev., vol. 107, no. March, pp. 568–586, 2019, doi: 10.1016/j.rser.2019.03.009

[63] T. Hanein, F. P. Glasser, M. N. Bannerman, “Thermodynamic data for cement clinkering,” Cem. Concr. Res., vol. 132, no. March, p. 106043, 2020, doi: 10.1016/j.cemconres.2020.106043

[64] D. Fernández-González, J. Prazuch, I. Ruiz-Bustinza, C. González-Gasca, J. Piñuela-Noval, L. F. Verdeja, “Solar synthesis of calcium aluminates,” Sol. Energy, vol. 171, pp. 658–666, Sep. 2018, doi: 10.1016/J.SOLENER.2018.07.012

[65] S. Licht, B. Cui, B. Wang, “STEP carbon capture - The barium advantage,” J. CO2 Util., 2013, doi: 10.1016/j.jcou.2013.03.006

[66] B. Wang, D. Gu, J. Dong, D. Yuan, L. Zhu, “STEP chemistry: A fundamental insight into solar thermal electrochemical process,” Energy Convers. Manag., 2017, doi: 10.1016/j.enconman.2017.09.045

[67] L. Al-Ghussain, H. Ahmed, F. Haneef, “Optimization of hybrid PV-wind system: Case study Al-Tafilah cement factory, Jordan,” Sustain. Energy Technol. Assessments, vol. 30, no. August, pp. 24–36, 2018, doi: 10.1016/j.seta.2018.08.008

[68] G. Moumin et al., “CO2 emission reduction in the cement industry by using a solar calciner,” Renew. Energy, vol. 145, pp. 1578–1596, 2020, doi: 10.1016/j.renene.2019.07.045

[69] D. Gielen, F. Boshell, D. Saygin, M. D. Bazilian, N. Wagner, R. Gorini, “The role of renewable energy in the global energy transformation,” Energy Strateg. Rev., vol. 24, no. June 2018, pp. 38–50, 2019, doi: 10.1016/j.esr.2019.01.006

[70] T. Welton, “Solvents and sustainable chemistry.,” Proc. R. Soc. A, vol. 471, no. 2183, pp. 1–26, 2015, doi: 10.1098/rspa.2015.0502.

[71] A. Hasanbeigi, L. Price, E. Lin, “Emerging energy-efficiency and CO2emission-reduction technologies for cement and concrete production: A technical review,” Renew. Sustain. Energy Rev., vol. 16, no. 8, pp. 6220–6238, 2012, doi: 10.1016/j.rser.2012.07.019