Vol. 20 No. 3 (2021): Revista UIS Ingenierías
Articles

Aerodynamic analysis of unmanned aerial vehicle with hawk shape for monitoring oil leakage

Christopher Fuentes-Hernández
Universidad Veracruzana
Ernesto Elvira-Hernández
Universidad Veracruzana
Oliver Huerta-Chávez
Tecnológico Nacional de México
Héctor Vázquez-Leal
Universidad Veracruzana
Marco Vigueras-Zúñiga
Universidad Veracruzana
Agustin Leobardo Herrera-May
Universidad Veracruzana

Published 2021-06-07

Keywords

  • aerodynamic analysis,
  • infrared camera,
  • computational fluid dynamics,
  • drag coefficient,
  • lift coefficient,
  • oil leakage,
  • oil industry,
  • oil pipeline,
  • subsonic wind tunnel,
  • unmanned aerial vehicle
  • ...More
    Less

How to Cite

Fuentes-Hernández, C., Elvira-Hernández, E., Huerta-Chávez, O., Vázquez-Leal, H., Vigueras-Zúñiga, M., & Herrera-May, A. L. (2021). Aerodynamic analysis of unmanned aerial vehicle with hawk shape for monitoring oil leakage. Revista UIS Ingenierías, 20(3), 135–146. https://doi.org/10.18273/revuin.v20n3-2021009

Abstract

The oil pipeline network requires periodic monitoring to detect pipeline damages, which may cause oil leakage with severe environmental contamination. These damages can be generated by interference from third parties such as construction works, sabotage, vandalism, excavations, and illegal oil theft. To detect the oil pipeline damages, it can be used aerodynamic aerial vehicles (UAVs) with infrared cameras and image processing systems. This paper presents the aerodynamic analysis of a UAV with a hawk shape (wingspan of 2.20 m and length of 1.49 m) for potential application in the detection of oil pipeline failures. A 1:6.5 scale prototype of the UAV is fabricated using a 3D printer. The aerodynamic coefficients of UAV are determined using computational fluid dynamic (CFD) simulations and experimental testing with a subsonic wind tunnel. In addition, the lift and drag coefficients of UAVs are obtained as a function of Reynolds number and angle of attack. Also, the air velocity profile around UAV is estimated with the CFD model. The proposed UAV could decrease the inspection costs of pipeline networks in comparison with the use of helicopters or light aircraft.

Downloads

Download data is not yet available.

References

[1] T. Shu-Jiao, W. Zong-Zhi, W. Ru-Jun, W. Hao, “Fire risk study of long-distance oil and gas pipeline based on QRA,” Procedia Eng., vol. 135, pp. 369-375, 2016, doi: 10.1016/j.proeng.2016.01.144

[2] C. Gómez, D.R. Green, “Small unmanned airborne systems to support oil and gas pipeline monitoring and mapping,” Arab. J. Geosci., vol. 10, no. 202, pp. 1-17, 2017. doi: 10.1007/s12517-017-2989-x

[3] D. Rifai, A.N. Abdalla, R. Razali, K. Ali, M.A. Faraj, “An Eddy current testing platform system for pipe defect inspection based on an optimized Eddy current technique probe design,” Sensors, vol. 17, no. 3, pp. 579, 2017. doi: 10.3390/s17030579

[4] H. Iqbal, S. Tesfamariam, H. Haider, R. Sadiq, “Inspection and maintenance of oil & gas pipelines: a review of policies,” Struct. Infrastruct. Eng., vol. 13, no. 6, pp. 794-815, 2016. doi: 10.1080/15732479.2016.1187632

[5] Mohamed, M.S. Hamdi, S. Tahar, “Using Computational Intelligence for the Safety Assessment of Oil and Gas Pipelines: A Survey,” in Data Science and Big Data: An Environment of Computational Intelligence. Studies in Big Data, Pedrycz, W., Chen, S.M., Eds.; Cham: Springer International Publishing, 2017, pp. 189-207.

[6] Y. Guo, X. Meng, D. Wang, T. Meng, S. Liu, “Comprehensive risk evaluation of long-distance oil and gas transportation pipelines using a fuzzy Petri net model,” J. Nat. Gas Sci. Eng., vol. 33, pp. 18-29, 2016. doi: 10.1016/j.jngse.2016.04.052

[7] S. B. Da Cunha, “A review of quantitative risk assessment of onshore pipelines,” J. Loss Prev. Proc. Ind., vol. 44, pp. 282-298, 2016. doi: 10.1016/j.jlp.2016.09.016

[8] Q. Zhou, W. Wu, D. Liu, K. Li, Q. Qiao, “Estimation of corrosion failure likelihood of oil and gas pipeline based on fuzzy logic approach,” Eng. Fail. Anal., vol. 70 pp. 48-55, 2016. doi: 10.1016/j.engfailanal.2016.07.014

[9] D. Yuhua, Y. Datao, “Estimation of failure probability of oil and gas transmission pipelines by fuzzy fault tree analysis,” J. Loss Prev. Proc. Ind., vol. 18, no. 2, pp. 83-88, 2005. doi: 10.1016/j.jlp.2004.12.003

[10] W. Liang, J. Hu, L. Zhang, C. Guo, W. Lin, “Assessing and classifying risk of pipeline third-party interference based on fault tree and SOM,” Eng. Appl. Artif. Intel., vol. 25, no. 3, pp. 594-608, 2012. doi: 10.1016/j.engappai.2011.08.010

[11] C. O. Okpo, R. C. Eze, “Vandalization of oil pipelines in the niger Delta region of Nigeria and poverty: an overview,” Stud. Sociol. Sci., vol. 3, no. 2, pp. 13-21, 2012. doi: 10.3968/j.sss.1923018420120302.2950

[12] R. Standard, 2014. Police probe theft of oil from pipeline under Nick Clegg’s country residence - Crime, London Evening Standard [Online]. Available: http://www.standard.co.uk/news/crime/police-probe-theft-of-oil-from-pipeline-under-nickcleggs-country-residence-9659184.html

[13] P. E. Igbinovia, Oil Thefts and Pipeline Vandalization in Nigeria. Ibadan, Nigeria: Safari Books, 2014.

[14] J. Sun, Z. Zhang, X. Sun, “The intelligent crude oil anti-theft system Based on IoT under different scenarios,” Proc. Comp. Sci., vol. 96, pp. 1581-1588, 2016. doi: 10.1016/j.procs.2016.08.205

[15] P. W. Parfomak, Keeping America's pipelines safe and secure: key issues for congress, Congressional Research Service, 2011 [Online]. Available: http://fas.org/sgp/crs/homesec/R41536.pdf

[16] J. Eze, C. Nwagboso, P. Georgakis, “Framework for integrated oil pipeline monitoring and incident mitigation systems,” Rob. Comp. Integ. Manuf., vol. 47, pp. 44-52, 2017. doi: 10.1016/j.rcim.2016.12.007

[17] L. Torres, C. Verde, L. Molina, “Leak diagnosis for pipelines with multiple branches based on model similarity,” J. Process Control, vol. 99, pp. 41-53, 2021. doi: 10.1016/j.jprocont.2020.12.003

[18] C. Verde, L. Torres, O. González, “Descentralized scheme for leaks’ location in a branched pipeline,” J. Loss Prev. Process Ind., vol. 43, pp. 18-28, 2016. doi: 10.1016/j.jlp.2016.03.023

[19] O. González, C. Verde, L. Torres, “Leak estimation method for complex pipelines with branch juctions,” J. Press. Vessel Technol., vol. 139, no. 2, pp. 021701, 2017. doi: 10.1115/1.4034403

[20] Sóbester, A.J. Keane, J. Scanlan, N.W. “Bressloff, Conceptual design of UAV airframes using a generic geometry service,” In Proceedings of the Infotech@Aerospace Conferences, Arlington, VA, USA, 2005, pp. 26-29. doi: 10.2514/6.2005-7079

[21] L. Jung-Ryul, C. Chang Min, P. Chan Yik, T Chung Thanh, S. Hye Jin, J. Hyomi, B. F. Eric, “Spar disbond visualization in in-service composite UAV with ultrasonic propagation imager,” Aerosp. Sci. Technol. vol. 45, pp. 180-185, 2015. doi: 10.1016/j.ast.2015.05.010

[22] P. Panagiotou, P. Kaparos, C. Salpingidou, K. Yakinthos, “Aerodynamic design of a MALE UAV,” Aerosp. Sci. Technol., vol. 50, pp. 127-138, 2016. doi: 10.1016/j.ast.2015.12.033

[23] P. Panagiotou, S. Fotiadis-Karras, K. Yakinthos, “Conceptual design of a Blended Wing Body MALE UAV,” Aerosp. Sci. Technol., vol. 73, pp. 32-47, 2018. doi: 10.1016/j.ast.2017.11.032

[24] S. Pant, P. Nooralishahi, N.P. Avdelidis, C. Ibarra-Castanedo, M. Genest, S. Deane, J.J. Valdes, A. Zolotas, X. P. V. Maldague, “Evaluation and Selection of Video Stabilization Techniques for UAV-Based Active Infrared Thermography Application,” Sensors, vol. 21, no. 5, pp. 1604, 2021. doi: 10.3390/s21051604

[25] L.I. Kochetkova, “Pipeline monitoring with unmanned aerial vehicles,” J. Phys. Conf. Ser., vol. 1015, no. 4, pp. 20-21, 2021. doi: 10.1088/1742-6596/1015/4/042021

[26] Vertical Technologies, “ DeltaQuad PRO # VIEW,” 2021 [Online]. Available: https://www.deltaquad.com/vtol-drones/view/#specifications

[27] B. Raeisi, H. Alighanbari, “Effects of tilting rate variations on the aerodynamics of the tilting ducted fans mounted at the wing tips of a vertical take-off and landing unmanned aerial vehicle,” Proc. IMechE Part G: J. Aerosp. Eng., vol. 232, no. 10, pp. 1803-1813, 2018. doi: 10.1177/0954410017703146

[28] X. Du, A. Dori, E. Divo, V. Huayamave, F. Zhu, “Modeling the motion of small unmanned aerial system (sUAS) due to ground collision,” Proc. IMechE Part G: J Aerosp. Eng., vol. 232, no. 10, pp. 1961-1970, 2018. doi: 10.1177/0954410017705903

[29] P. D. Bravo-Mosquera, L. Botero-Bolivar, D. Acevedo-Giraldo, H. D. Cerón-Muñoz, “Aerodynamic design analysis of a UAV for superficial research of volcanic environments,” Aerosp. Sci. Technol., vol. 70, pp. 600-614, 2017. doi: 10.1016/j.ast.2017.09.005

[30] F. R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with the SST turbulence model,” in Turbulence, Heat and Mass Transfer 4, K. Hanjalic, Y. Nagano, M. Tummers (Eds.), New York, NY: Begell House Inc, 2003, pp. 625-632.

[31] F. R. Menter, Zonal two equation k– turbulence models for aerodynamic flows. Sunnyvale, CA, USA: AIAA, 1993.

[32] F. Menter, C.J. Ferreira, T. Esch, B. Konno, “The SST Turbulence Model with Improved Wall Treatment for Heat Transfer Predictions in Gas Turbines,” in International Gas Turbine Congress 2003, Tokyo, IGTC2003-TS-059, 2003, pp. 2-7.

[33] J. E. Bardina, P. G. Huang, T. J. Coakley, “Turbulence Modeling, Validation, Testing and Development,” in NASA Technical Memorandum 110446, 1997.

[34] H. Schlichting, K. Gersten, Boundary-Layer Theory. 9th ed., Berlin: Springer Nature, 2017.

[35] Y. Cengel, Fluid Mechanics Fundamentals and Applications. 3rd ed. New York, NY, USA: McGraw-Hill Education, 2013.

[36] AeroLab, “Educational Wind Tunnel Operations Manual,” University of Colorado Boulder, 2012.

[37] P. J. Boschetti, E. M. Cárdenas, A. Amerio, Aerodynamic optimization of an UAV design. Arlington, VA, USA: American Institute of Aeronautics and Astronautics, 2005. doi: 10.2514/6.2005-7399