Vol. 21 No. 1 (2022): Revista UIS Ingenierías
Articles

Composite materials reinforced with fique fibers – a review

Sergio Andrés Gómez-Suarez
Universidad Pontificia Bolivariana
Edwin Córdoba-Tuta
Universidad Pontificia Bolivariana

Published 2022-01-25

Keywords

  • fique,
  • composite materials,
  • reinforced composites,
  • characterization tests,
  • micromechanical modeling,
  • fiber treatment,
  • composite manufacturing,
  • matrix composite,
  • application composite,
  • natural fiber
  • ...More
    Less

How to Cite

Gómez-Suarez , S. A., & Córdoba-Tuta, E. (2022). Composite materials reinforced with fique fibers – a review . Revista UIS Ingenierías, 21(1), 163–178. https://doi.org/10.18273/revuin.v21n1-2022013

Abstract

Fique is a fiber of South American origin that has adequate properties to be used as reinforcement in composite materials, recently there have been various research for the development of composite materials with this fiber type. This article compiles different studies into composite materials reinforced with fique fiber. Initially discussed the issues related to the properties and treatments most commonly used to fiber to improve their quality and adhesion, then the types of matrix and the main manufacturing techniques that have been used for the manufacture of composites reinforced with fique fiber are described, followed by the different tests and characterization tests that have been applied to them to know their main properties and finally, their applications and the use of micromechanical models to describe them.

Downloads

Download data is not yet available.

References

  1. A. Raju, M. Shanmugaraja, “Recent researches in fiber reinforced composite materials: A review,” Mater. Today Proc., 2020, doi: https://doi.org/10.1016/j.matpr.2020.02.141.
  2. L. Kerni, S. Singh, A. Patnaik, N. Kumar, “A review on natural fiber reinforced composites,” Mater. Today Proc., vol. 28, pp. 1616–1621, 2020, doi: https://doi.org/10.1016/j.matpr.2020.04.851.
  3. R. D. J. Johnson, V. A. Prabu, P. Amuthakkannan, K. A. Prasath, “A review on biocomposites and bioresin based composites for potential industrial applications,” Rev. Adv. Mater. Sci., vol. 49, no. 1, pp. 112–121, 2017.
  4. A. F. Jusoh, M. R. M. Rejab, J. P. Siregar, D. Bachtiar, “Natural Fiber Reinforced Composites: A Review on Potential for Corrugated Core of Sandwich Structures,” MATEC Web Conf., vol. 74, pp. 7–11, 2016, doi: https://doi.org/10.1051/matecconf/20167400033.
  5. W. Kim et al., “High strain-rate behavior of natural fiber-reinforced polymer composites,” J. Compos. Mater., vol. 46, no. 9, pp. 1051–1065, 2012, doi: https://doi.org/10.1177/0021998311414946.
  6. D. B. Dittenber, H. V. S. Gangarao, “Critical review of recent publications on use of natural composites in infrastructure,” Compos. Part A Appl. Sci. Manuf., vol. 43, no. 8, pp. 1419–1429, 2012, doi: https://doi.org/10.1016/j.compositesa.2011.11.019.
  7. K. Keya, N. Kona, F. Koly, K. Maraz, M. Islam, R. Khan, “Natural fiber reinforced polymer composites: history, types, advantages, and applications,” Mater Eng Res, 2019, doi: https://doi.org/10.25082/MER.2019.02.006.
  8. O. Faruk, A. K. Bledzki, H. P. Fink, M. Sain, “Biocomposites reinforced with natural fibers: 2000-2010,” Prog. Polym. Sci., vol. 37, no. 11, pp. 1552–1596, 2012, doi: https://doi.org/10.1016/j.progpolymsci.2012.04.003.
  9. M. A. Hidalgo, M. F. Muñoz, J. H. Mina, “Influence of Incorporation of Natural Fibers on the Physical, Mechanical, and Thermal Properties of Composites LDPE-Al Reinforced with Fique Fibers,” Int. J. Polym. Sci., vol. 2015, doi: https://doi.org/10.1155/2015/386325.
  10. M. C. A. Teles, G. R. Altoé, P. A. Netto, H. Colorado, F. M. Margem, S. N. Monteiro, “Fique fiber tensile elastic modulus dependence with diameter using the weibull statistical analysis,” Mater. Res., vol. 18, no. Suppl 2, pp. 193–199, 2015, doi: https://doi.org/10.1590/1516-1439.364514.
  11. A. Gaitán-Bermúdez, G. Fonthal-Rivera, “Fabricación y análisis mecánico de compuestos de bambú Guadua angustifolia Kunth,” Rev. UIS Ing., vol. 19, no. 3, pp. 207–214, 2020, doi: https://doi.org/10.18273/revuin.v19n3-2020019.
  12. K. L. Pickering, M. G. A. Efendy, T. M. Le, “A review of recent developments in natural fibre composites and their mechanical performance,” Compos. Part A Appl. Sci. Manuf., vol. 83, pp. 98–112, 2015, doi: https://doi.org/10.1016/j.compositesa.2015.08.038.
  13. H. M. Akil, M. F. Omar, A. A. M. Mazuki, S. Safiee, Z. A. M. Ishak, A. Abu Bakar, “Kenaf fiber reinforced composites: A review,” Mater. Des., vol. 32, no. 8–9, pp. 4107–4121, 2011, doi: https://doi.org/10.1016/j.matdes.2011.04.008.
  14. V. Mahesh, S. Joladarashi, S. M. Kulkarni, “A comprehensive review on material selection for polymer matrix composites subjected to impact load,” Def. Technol., 2020, doi: https://doi.org/10.1016/j.dt.2020.04.002.
  15. M. A. Hidalgo, M. Muñoz, K. Quintana, “Análisis Mecánico del compuesto polietileno aluminio reforzado con fibras cortas de fique en disposición bidimensional,” Rev. Lat. Met., vol. 32, no. 1, pp. 89–95, 2012.
  16. M. A. Navacerrada, C. Díaz, P. Fernández, “Characterization of a Material Based on Short Natural Fique Fibers,” BioResources, vol. 9, no. 2, pp. 3480–3496, 2014, doi: https://doi.org/10.15376/biores.9.2.3480-3496.
  17. C. Gómez Hoyos, V. A. Alvarez, P. G. Rojo, A. Vázquez, “Fique fibers: Enhancement of the tensile strength of alkali treated fibers during tensile load application,” Fibers Polym., vol. 13, no. 5, pp. 632–640, 2012, doi: https://doi.org/10.1007/s12221-012-0632-8.
  18. P. Gañán, I. Mondragon, “Surface modification of fique fibers. Effect on their physico-mechanical properties,” Polym. Compos., vol. 23, no. 3, pp. 383–394, 2002, doi: https://doi.org/10.1002/pc.10440.
  19. L. Plata, D. Rivera, L. Castro, C. Guzmán Luna, H. Escalante Hernández, “Jerarquización de tecnologías para el aprovechamiento industrial del subproducto de la digestión anaerobia del bagazo de fque,” Rev. UIS Ing., vol. 11, no. 2, pp. 171–185, 2012.
  20. M. S. Oliveira et al., “Statistical analysis of notch toughness of epoxy matrix composites reinforced with fique fabric,” J. Mater. Res. Technol., vol. 8, no. 6, pp. 6051–6057, 2019, doi: https://doi.org/10.1016/j.jmrt.2019.09.079.
  21. S. Delvasto, E. F. Toro, F. Perdomo, R. M. de Gutiérrez, “An appropriate vacuum technology for manufacture of corrugated fique fiber reinforced cementitious sheets,” Constr. Build. Mater., vol. 24, no. 2, pp. 187–192, 2010, doi: https://doi.org/10.1016/j.conbuildmat.2009.01.010.
  22. M. F. Muñoz, M. A. Hidalgo, J. H. Mina, “Fibras de fique una alternativa para el reforzamento de plásticos. Influencia de la modificación superficial.,” vol. 12, no. 2, pp. 60–70, 2014.
  23. V. Yada, S. Singh, “A comprehensive review of natural fiber composites: Applications, Processing Techniques and propierties,” Mater. Today Proc., 2021, doi: https://doi.org/10.101016/j.matpr.2021.09.009.
  24. Y. G. Thyavihalli Girijappa, S. Mavinkere Rangappa, J. Parameswaranpillai, S. Siengchin, “Natural Fibers as Sustainable and Renewable Resource for Development of Eco-Friendly Composites: A Comprehensive Review,” Front. Mater., vol. 6, no. September, pp. 1–14, 2019, doi: https://doi.org/10.3389/fmats.2019.00226.
  25. M. Zwawi, “A review on natural fiber Bio-Composites, surface modifications and applications,” molecules, vol. 26, no. 404, p. 28, 2021, doi: https://doi.org/10.3390/molecules26020404.
  26. S. Kumar, A. Manna, R. Dang, “A review on applications of natural Fiber-Reinforced composites (NFRCs),” Mater. Today Proc., 2021, doi: https://doi.org/10.1016/j.matpr.2021.09.131.
  27. M. Sood, G. Dwivedi, “Effect of fiber treatment on flexural properties of natural fiber reinforced composites: A review,” Egypt. J. Pet., vol. 27, no. 4, pp. 775–783, 2018, doi: https://doi.org/10.1016/j.ejpe.2017.11.005.
  28. A. Langhorst et al., “Heat-treated blue agave fiber composites,” Compos. Part B Eng., vol. 165, no. October 2018, pp. 712–724, 2019, doi: https://doi.org/10.1016/j.compositesb.2019.02.035.
  29. S. D. Arjona, F. Perdomo, R. M. De Gutiérrez, “Ecolaminados de pead-fibras de fique,” Ing. y Compet., vol. 3, no. No 1, pp. 43–50, 2001.
  30. S. R. Albinante, É. B. A. V. Pacheco, L. L. Y. Visconte, “Revisão dos tratamentos químicos da fibra natural para mistura com poliolefinas,” Quim. Nova, vol. 36, no. 1, pp. 114–122, 2013, doi: https://doi.org/10.1590/S0100-40422013000100021.
  31. C. Castro, A. Palencia, I. Gutiérrez, G. Vargas, P. Gañán, “Determination of optimal alkaline treatment conditions for fique fiber bundles as reinforcement of composites materials,” Rev. Téc. Ing. Univ. Zulia, vol. 30, no. 2, pp. 136–142, 2007.
  32. S. Kalia, B. S. Kaith, I. Kaur, “Pretreatments of natural fibers and their application as reinforcing material in polymer composites—A review,” Polym. Eng. Sci., vol. 49, pp. 1253-1272., 2009, doi: https://doi.org/10.1002/pen.
  33. X. Li, L. G. Tabil, S. Panigrahi, “Chemical Treatments of Natural Fiber for Use in Natural Fiber-Reinforced Composites: A Review,” J. Polym. Environ., vol. 15, no. 1, pp. 25–33, 2007, doi: https://doi.org/10.1007/s10924-006-0042-3.
  34. P. Gañán, I. Mondragon, “Influence of Compatibilization Treatments on the Mechanical Properties of Fique Fiber Reinforced Polypropylene Composites,” Int. J. Polym. Mater., vol. 53, no. 11, pp. 997–1013, 2004, doi: https://doi.org/10.1080/00914030490516648.
  35. Q. Wang, X. Yan, Y. Chang, L. Ren, J. Zhou, “Fabrication and characterization of chitin nanofibers through esterification and ultrasound treatment,” Carbohydr. Polym., vol. 180, no. June 2017, pp. 81–87, 2018, doi: https://doi.org/10.1016/j.carbpol.2017.09.010.
  36. M. A. Hidalgo-Salazar, J. H. Mina, P. J. Herrera-Franco, “The effect of interfacial adhesion on the creep behaviour of LDPE-Al-Fique composite materials,” Compos. Part B Eng., vol. 55, pp. 345–351, 2013, doi: https://doi.org/10.1016/j.compositesb.2013.06.032.
  37. J. H. Mina, “Caracterización Físico-Mecánica De Un Almidón Termoplastico De Yuca Y Análisis Interfacial Con Fibras De Fique,” Biotecnol. en el Sect. Agropecu. y Agroindustrial, vol. 10, no. 2, pp. 99–110, 2012.
  38. C. Gómez Hoyos, A. Vázquez, “Flexural properties loss of unidirectional epoxy/fique composites immersed in water and alkaline medium for construction application,” Compos. Part B Eng., vol. 43, no. 8, pp. 3120–3130, 2012, doi: https://doi.org/10.1016/j.compositesb.2012.04.027.
  39. S. Kaushik, M. K. Waltraud, “Potassium Geopolymer Reinforced with Alkali‐Treated Fique,” in Developments in Strategic Materials and Computational Design V, 2015, pp. 61–78.
  40. R. E. Guzmán, S. Gómez, O. Amelines, G. M. Aparicio, “Superficial modification by alkalization of cellulose Fibres obtained from Fique leaf,” IOP Conf. Ser. Mater. Sci. Eng., vol. 437, no. 1, 2018, doi: https://doi.org/10.1088/1757-899X/437/1/012015.
  41. J. Suarez, J. Restrepo, A. Quinchia, F. Mercado, “Fibras vegetales colombianas como refuerzo en compuestos de matriz polimerica,” Tecnura, vol. 21, no. 51, pp. 57–66, 2017, doi: https://doi.org/10.14483/udis-trital.jour.tecnura.2017.1.a04.
  42. J. H. M. Hernandez, E. F. T. Perea, K. C. Mejía, C. A. M. Jacobo, “Effect of fique fibers in the behavior of a new biobased composite from renewable Mopa-Mopa Resin,” Polymers (Basel)., vol. 12, no. 7, pp. 1–15, 2020, doi: https://doi.org/10.3390/polym12071573.
  43. J. H. Mina, A. V. González, M. F. Muñoz-Vélez, “Micro- and macromechanical properties of a composite with a ternary PLA-PCL-TPS matrix reinforced with short fique fibers,” Polymers (Basel)., vol. 12, no. 1, 2020, doi: https://doi.org/10.3390/polym12010058.
  44. S. A. Ovalle, C. Blanco-Tirado, M. Y. Combariza, “Síntesis in Situ De Nanopartículas De Plata Sobre Fibras De Fique,” Rev. Colomb. Química, vol. 42, no. 1, pp. 30–37, 2014.
  45. S. A. Gomez, B. Ramón-Valencia, A. S. Jaimes, “Experimental dynamic characterization of composites reinforced with natural fiber of fique,” Ingeniare, Rev. Chil. Ing., vol. 28, pp. 304–314, 2020.
  46. P. Gañán, I. Mondragon, “Thermal and degradation behavior of fique fiber reinforced thermoplastic matrix composites,” J. Therm. Anal. Calorim., vol. 73, no. 3, pp. 783–795, 2003, doi: https://doi.org/10.1023/A:1025830430267.
  47. P. Gañán, I. Mondragon, “Fique fiber-reinforced polyester composites: Effects of fiber surface treatments on mechanical behavior,” J. Mater. Sci., vol. 39, pp. 3121–3128, 2004, doi: https://doi.org/10.1023/B:JMSC.0000025841.67124.c3.
  48. L. J. Castellanos, C. Blanco-Tirado, J. P. Hinestroza, M. Y. Combariza, “In situ synthesis of gold nanoparticles using fique natural fibers as template,” Cellulose, vol. 19, no. 6, pp. 1933–1943, 2012, doi: https://doi.org/10.1007/s10570-012-9763-8.
  49. L. J. Rodríguez, W. A. Sarache, C. E. Orrego, “Compuestos de poliéster reforzados con fibra de plátano/banano (Musa paradisiaca) modificada químicamente. Comparación con fibra de vidrio y fique (Furcraea andina),” Inf. Tecnol., vol. 25, no. 5, pp. 27–34, 2014, doi: https://doi.org/10.4067/S0718-07642014000500005.
  50. P. Gañan, I. Mondragon, “Effect of Fiber Treatments on Mechanical Behavior of Short Fique Fiber-reinforced Polyacetal Composites,” J. Compos. Mater., vol. 39, no. 7, pp. 633–646, 2005, doi: https://doi.org/10.1177/0021998305047268.
  51. M. Chacón, C. Blanco-Tirado, M. Combariza, “Biocomposite of nanostructured MnO2 and fique fibers for efficient dye degradation,” Green Chem., vol. 15, p. 2920, 2013, doi: https://doi.org/10.1039/c3gc40911b.
  52. M. F. Muñoz-Vélez, M. A. Hidalgo-Salazar, J. H. Mina-Hernández, “Effect of content and surface modification of fique fibers on the properties of a low-density polyethylene (LDPE)-Al/fique composite,” Polymers (Basel)., vol. 10, no. 10, pp. 1–14, 2018, doi: https://doi.org/10.3390/polym10101050.
  53. A. K. Sharma, R. Bhandari, A. Aherwar, R. Rimašauskiene, “Matrix materials used in composites: A comprehensive study,” Mater. Today Proc., vol. 21, pp. 1559–1562, 2020, doi: https://doi.org/10.1016/j.matpr.2019.11.086.
  54. D. Verma, “Bagasse fiber composites: A Review,” J. Mater. Environ. Sci., vol. 3, pp. 1079–1092, 2012.
  55. N. Banik, “A review on the use of thermoplastic composites and their effects in induction welding method,” Mater. Today Proc., vol. 5, no. 9, Part 3, pp. 20239–20249, 2018, doi: https://doi.org/10.1016/j.matpr.2018.06.395.
  56. Y. Zhang, Z. Yuan, C. (Charles) Xu, “8 - Bio-based resins for fiber-reinforced polymer composites,” in Natural Fiber-Reinforced Biodegradable and Bioresorbable Polymer Composites, A. K. Lau and A. P.-Y. Hung, Eds. Woodhead Publishing, 2017, pp. 137–162.
  57. D. P. Navia, A. A. Ayala, H. S. Villada, “Determinación de isotermas de adsorción de agua en biocompuestos de harina termoplastica y fique,” Biotecnol. en el Sect. Agropecu. y Agroind., vol. 11, no. 1, pp. 144–154, 2013.
  58. D. P. Navia, H. S. Villada Castillo, G. A. Torres, “Caracterización morfológica de harina de siete variedades de yuca y polvillo de fique por microscopia óptica de alta resolución -Moar-,” Biotecnol. en el Sect. Agropecu. y Agroindustrial, vol. 8, no. 2 SE-Artículos originales, pp. 79–85, Dec. 2010.
  59. D. P. Navia, A. A. Ayala, H. S. Villada, “Effect of cassava flour gelatinization on mechanical properties of bioplastics,” Biotecnol. en el Sect. Agropecu. y Agroindustrial, vol. 13, no. 1, pp. 38–44, 2015.
  60. D. P. Navia, A. A. Ayala, H. S. Villada, “Biocompuestos de harina de yuca obtenidos por termo- compresión. efecto de las condiciones de proceso,” Inf. Tecnol., vol. 26, no. 5, pp. 55–62, 2015, doi: https://doi.org/10.4067/S0718-07642015000500008.
  61. D. P. Navia, A. A. Ayala, H. S. Villada, “Adsorción de vapor de agua Bioplastios elaborados con Harina de dos variedades de yuca,” Inf. Tecnol., vol. 25, pp. 23–32, 2014.
  62. D. P. Navia, H. S. Villada, A. A. Ayala, “Evaluación mecánica de bioplasticos semirrígidos elaborados con harina de yuca,” Biotecnol. en el Sect. Agropecu. y Agroind., vol. 2, no. 2, pp. 77–85, 2013.
  63. G. Luna, H. Villada, R. Velasco, “Fique ́s fiber reinforced thermoplastic starch of cassava: Preliminary,” DYNA, vol. 76, no. 159, pp. 145–151, 2009.
  64. D. P. Navia, N. Bejarano, “Evaluación de propiedades físicas de bioplásticos termo-comprimidos elaborados co harina de yuca,” Rev. del Inst. Nac. Hig. Rafael Rangel, vol. 12, pp. 40–48, 2014.
  65. J. P. Castañeda, S. Villada Castillo, S. A. Mosquera Sanchez, “Evaluación de las propiedades mecánicas en harinas de amaranto termoformadas (amaranthus caudatus),” Fac. ciencias Agropecu., vol. 6, pp. 61–65, 2008.
  66. F. Ramón Valencia, A. Lopez-Arraiza, J. I. Múgica, J. Aurrekoetxea, J. C. Suarez, B. Ramón-Valencia, “Influence of seawater immersion in low energy impact behavior of a novel colombian fique fiber reinforced bio-resin laminate,” Dyna, vol. 82, no. 194, pp. 170–177, 2015, doi: https://doi.org/10.15446/dyna.v82n194.48622.
  67. S. A. Gómez, B. A. Ramón, R. E. Guzmán, “Análisis modal de material compuesto de resina bioepoxy/fibra de fique,” Entre Cienc. e Ing., vol. 12, no. 23, p. 78, 2018, doi: https://doi.org/10.31908/19098367.3706.
  68. S. Gómez, B. Ramón, R. Guzman, “Comparative study of the mechanical and vibratory properties of a composite reinforced with fique fibers versus a composite with E-glass fibers,” Rev. UIS Ing., vol. 13, no. 1, pp. 43–50, 2018, doi: https://doi.org/10.18273/revuin.v17n1-2018004.
  69. M. A. Hidalgo, M. F. Muñoz, K. J. Quintana, “Desempeño mecánico del compuesto polietileno-aluminio reforzado con agro fibras continuas de fique,” Rev. Lat. Met. Mat., vol. 31, no. 2, pp. 187–194, 2011.
  70. M. Hidalgo, M. F. Muñoz Vélez, J. Mina, T. Osswald, “Study of the interfacial properties of fique fiber reinforced polyethylene aluminium,” Annu. Tech. Conf. - ANTEC, Conf. Proc., vol. 1, pp. 575–580, 2012.
  71. M. A. Hidalgo-Salazar, J. P. Correa, “Mechanical and thermal properties of biocomposites from nonwoven industrial Fique fiber mats with Epoxy Resin and Linear Low Density Polyethylene,” Results Phys., vol. 8, pp. 461–467, 2018, doi: https://doi.org/10.1016/j.rinp.2017.12.025.
  72. S. M. Luz, A. R. Gonçalves, A. P. Del’Arco, A. L. Leão, P. M. C. Ferrão, G. J. M. Rocha, “Thermal properties of polypropylene composites reinforced with different vegetable fibers,” Adv. Mater. Res., vol. 123–125, pp. 1199–1202, 2010, doi: https://doi.org/10.4028/www.scientific.net/AMR.123-125.1199.
  73. C. A. M. Valencia, J. F. Pazos-Ospina, E. E. Franco, J. L. Ealo, D. A. Collazos-Burbano, G. F. C. Garcia, “Ultrasonic determination of the elastic constants of epoxy-natural fiber composites,” Phys. Procedia, vol. 70, pp. 467–470, 2015, doi: https://doi.org/10.1016/j.phpro.2015.08.287.
  74. M. S. Oliveira et al., “Ballistic performance and statistical evaluation of multilayered armor with epoxy-fique fabric composites using the Weibull analysis,” J. Mater. Res. Technol., vol. 8, no. 6, pp. 5899–5908, 2019, doi: https://doi.org/10.1016/j.jmrt.2019.09.064.
  75. M. S. Oliveira et al., “Evaluation of dynamic mechanical properties of fique fabric/epoxy composites,” Mater. Res., vol. 22, pp. 1–6, 2019, doi: https://doi.org/10.1590/1980-5373-MR-2019-0125.
  76. O. A. González-Estrada, G. Díaz, J. Quiroga, “Mechanical response and damage of woven composite materials reinforced with fique,” Key Eng. Mater., vol. 774 KEM, pp. 143–148, 2018, doi: https://doi.org/10.4028/www.scientific.net/KEM.774.143.
  77. J. Rua, M. F. Buchely, S. N. Monteiro, G. I. Echeverri, H. A. Colorado, “Impact behavior of laminated composites built with fique fibers and epoxy resin: a mechanical analysis using impact and flexural behavior,” J. Mater. Res. Technol., vol. 14, pp. 428–438, 2021, doi: https://doi.org/10.1016/j.jmrt.2021.06.068.
  78. G. R. Altoé, P. A. Netto, M. C. A. Teles, G. Daniel, F. M. Margem, S. N. Monteiro, “Tensile strength of polyester composites reinforced with fique fibers,” Charact. Miner. Met. Mater. 2015, pp. 465–470, 2016, doi: https://doi.org/10.1007/978-3-319-48191-3_57.
  79. A. Maranon, “Impact performance of natural fique - fiber reinforced composites,” Proc. IMECE2008 2008 ASME Int. Mech. Eng. Congr. Expo., pp. 1–2, 2008.
  80. G. R. Altoé, P. A. Netto, M. Barcelos, A. Gomes, F. M. Margem, S. N. Monteiro, “Bending mechanical behavior of polyester matrix reinforced with fique fiber,” Charact. Miner. Met. Mater. 2015, pp. 117–121, 2016.
  81. M. Pietroniro, C. Bloem, “Ventajas del algodón frente al fique como refuerzo en compuestos poliméricos,” Cienc. e Ing., vol. 36, pp. 51–58, 2015.
  82. M. F. Contreras, W. A. Hormaza, A. Marañón, “Fractografía de la fibra natural extraída del fique y de un material compuesto reforzado con tejido de fibra de fique y matriz resina poliéster,” Rev. Latinoam. Metal. y Mater., vol. S1, no. 1, pp. 57–67, 2009, [Online]. Available: www.polimeros.labb.usb.ve/RLMM/home.html.
  83. A. C. Pereira et al., “Ballistic performance of multilayered armor with intermediate polyester composite reinforced with fique natural fabric and fibers,” J. Mater. Res. Technol., vol. 8, no. 5, pp. 4221–4226, 2019, doi: https://doi.org/10.1016/j.jmrt.2019.07.031.
  84. A. C. Pereira et al., “Evaluation of the projectile’s loss of energy in polyester composite reinforced with fique fiber and fabric,” Mater. Res., vol. 22, pp. 1–7, 2019, doi: https://doi.org/10.1590/1980-5373-MR-2019-0146.
  85. G. H. D. Tonoli, S. F. Santos, H. Savastano, S. Delvasto, R. Mejía De Gutiérrez, M. D. M. Lopez De Murphy, “Effects of natural weathering on microstructure and mineral composition of cementitious roofing tiles reinforced with fique fibre,” Cem. Concr. Compos., vol. 33, no. 2, pp. 225–232, 2011, doi: https://doi.org/10.1016/j.cemconcomp.2010.10.013.
  86. R. Mejia, L. A. Calderón, S. Delvasto, “Degradation of fiber reinforced mortar in a marine environment,” Mar. Corros. Trop. Environ., pp. 197–206, 2000.
  87. C. G. Hoyos, R. Zuluaga, P. Gañán, T. M. Pique, A. Vazquez, “Cellulose nanofibrils extracted from fique fibers as bio-based cement additive,” J. Clean. Prod., vol. 235, pp. 1540–1548, 2019, doi: https://doi.org/10.1016/j.jclepro.2019.06.292.
  88. R. de Cassia Costa Dias, M. L. Costa, L. de Sousa Santos, R. Schledjewski, “Kinetic parameter estimation and simulation of pultrusion process of an epoxy-glass fiber system,” Thermochim. Acta, vol. 690, no. April, p. 178636, 2020, doi: https://doi.org/10.1016/j.tca.2020.178636.
  89. E. Sevkat, M. Brahimi, “The bearing strength of pin loaded woven composites manufactured by Vacuum Assisted Resin Transfer Moulding and hand lay-up techniques,” Procedia Eng., vol. 10, pp. 153–158, 2011.
  90. T. Gajjar, D. B. Shah, S. J. Joshi, K. M. Patel, “Analysis of process parameters for composites manufacturing using vacuum infusion process,” Mater. Today Proc., vol. 21, pp. 1244–1249, 2020, doi: https://doi.org/10.1016/j.matpr.2020.01.112.
  91. B. KC, M. Pervaiz, O. Faruk, J. Tjong, M. Sain, “Green Composite Manufacturing via Compression Molding and Thermoforming,” in Manufacturing of Natural Fibre Reinforced Polymer Composites, M. S. Salit, M. Jawaid, N. Bin Yusoff, and M. E. Hoque, Eds. Cham: Springer International Publishing, 2015, pp. 45–63.
  92. M. S. Salit, “Manufacturing Techniques of Tropical Natural Fibre Composites,” in Tropical Natural Fibre Composites: Properties, Manufacture and Applications, Singapore: Springer Singapore, 2014, pp. 103–118.
  93. S. N. Monteiro et al., “Fique fabric: A promising reinforcement for polymer composites,” Polymers (Basel)., vol. 10, no. 3, pp. 1–10, 2018, doi: https://doi.org/10.3390/polym10030246.
  94. M. R. Sanjay, G. R. Arpitha, L. L. Naik, K. Gopalakrishna, B. Yogesha, “Applications of Natural Fibers and Its Composites: An Overview,” Nat. Resour., vol. 07, no. 03, pp. 108–114, 2016, doi: https://doi.org/10.4236/nr.2016.73011.
  95. V. K. Thakur, M. K. Thakur, “Processing and characterization of natural cellulose fibers/thermoset polymer composites,” Carbohydr. Polym., vol. 109, pp. 102–117, 2014, doi: https://doi.org/10.1016/j.carbpol.2014.03.039.
  96. J. Holbery, D. Houston, “Natural-fiber-reinforced polymer composites in automotive applications,” JOM, vol. 58, no. 11, pp. 80–86, 2006, doi: https://doi.org/10.1007/s11837-006-0234-2.
  97. M. S. Huda, L. T. Drzal, D. Ray, A. K. Mohanty, M. Mishra, “7 - Natural-fiber composites in the automotive sector,” in Properties and Performance of Natural-Fibre Composites, K. L. Pickering, Ed. Woodhead Publishing, 2008, pp. 221–268.
  98. S. M. Velásquez Restrepo, G. J. Pelaéz Arroyave, D. H. Giraldo Vásquez, "Uso de fibras vegetales en materiales compuestos de matriz polimérica: una revisión con miras a su aplicación en el diseño de nuevos productos", Inf. tec., vol. 80, n.º 1, pp. 77–86, jun. 2016.
  99. S. A. Gomez-Suarez, E. Cordoba, C. Vega, S. Gomez-Becerra, “Manufacture of student chair in composite material reinforced with fique fiber,” Sci. Tech., vol. 26, no. 01, pp. 6–13, 2021.
  100. T. S. Gomez, M. A. Navacerrada, C. Díaz, P. Fernández-Morales, “Fique fibres as a sustainable material for thermoacoustic conditioning,” Appl. Acoust., vol. 164, p. 107240, 2020, doi: https://doi.org/10.1016/j.apacoust.2020.107240.
  101. Y. Pan, Z. Zhong, “A micromechanical model for the mechanical degradation of natural fiber reinforced composites induced by moisture absorption,” Mech. Mater., vol. 85, pp. 7–15, 2015, doi: https://doi.org/10.1016/j.mechmat.2015.02.001.
  102. F. Chegdani, M. El Mansori, S. T. S. Bukkapatnam, J. N. Reddy, “Micromechanical modeling of the machining behavior of natural fiber-reinforced polymer composites,” Int. J. Adv. Manuf. Technol., vol. 105, no. 1–4, pp. 1549–1561, 2019, doi: https://doi.org/10.1007/s00170-019-04271-3.
  103. K. Jagath Narayana, R. G. Burela, “Multi-scale modeling and simulation of natural fiber reinforced composites (Bio-composites),” J. Phys. Conf. Ser., vol. 1240, no. 1, pp. 0–10, 2019, doi: https://doi.org/10.1088/1742-6596/1240/1/012103.
  104. D. Abe, O. Bacarreza, F. M.H.Aliabadi, “Micromechanical Modeling for the Evaluation of Elastic Moduli of Woven Composites,” in Advances in Fracture and Damage Mechanics XI, 2013, vol. 525, pp. 73–76, doi: https://doi.org/10.4028/www.scientific.net/KEM.525-526.73.