Vol. 20 No. 3 (2021): Revista UIS Ingenierías
Articles

Efficient improvement for the estimation of the surface of free energy asphalt binder using Machine Learning toolss

David Sierra-Porta
Universidad de los Andes

Published 2021-06-07

Keywords

  • asphalt cement,
  • surface free energy,
  • asphalt mixtures,
  • machine learning,
  • random forest,
  • strategic highway research plan
  • ...More
    Less

How to Cite

Sierra-Porta, D. (2021). Efficient improvement for the estimation of the surface of free energy asphalt binder using Machine Learning toolss. Revista UIS Ingenierías, 20(3), 179–188. https://doi.org/10.18273/revuin.v20n3-2021013

Abstract

The Surface Free Energy (SFE) of a material is defined as the energy needed to create a new surface unit under vacuum conditions. This property is directly related to the resistance to fracture and recovery of material and the ability to create strong adhesion with other materials. This value can be used as a complementary parameter for the selection and optimal combination of materials for asphalt mixtures, as well as in the micromechanical modeling of fracture and recovery processes of said mixtures. This document describes the results of the implementation of the use of machine learning and Random Forest prediction techniques for the estimation of surface free energy based on data from previous studies. The experimental samples were twenty-three asphalt binders used in a Strategic Highway Research Program (SHRP). A decrease of 54% and 82% in the mean absolute error (MAE) and the mean square error (MSE), respectively was found for the new model built. While the model fits better with a 12% improvement, according to the adjusted determination coefficient, the accuracy and the score of the model also increases notably in 2% and 55%, respectively.

Downloads

Download data is not yet available.

References

[1] K. L. Mittal, Advances in contact angle, wettability and adhesion. Hoboken, NJ, USA: John Wiley & Sons, 2015.

[2] K. L. Mittal, Contact Angle, Wettability and Adhesion, Volume 3. Boca Ratón, FL, USA: CRC Press, 2003.

[3] P. G. De Gennes, “Wetting: statics and dynamics,” Reviews of modern physics, vol. 57, no. 3, pp. 827, 1985. doi: 10.1103/RevModPhys.57.827

[4] O. Voinov, “Dynamics of a viscous liquid wetting a solid via van der waals forces,” Journal of Applied Mechanics and Technical Physics, vol. 35, no. 6, pp. 875-890, 1994. doi: 10.1007/BF02369581

[5] E. Ramé, “The interpretation of dynamic contact angles measured by the wilhelmy plate method,” Journal of colloid and interface science, vol. 185, no. 1, pp. 245-251, 1997. doi: 10.1006/jcis.1996.4589

[6] L. M. Lander, L. M. Siewierski, W. J. Brittain, E. A. Vogler, “A systematic comparison of contact angle methods,” Langmuir, vol. 9, no. 8, pp. 2237-2239, 1993.

[7] H. Wu, A. Shen, Z. He, T. Cui, “Study on adhesion between asphalt and steel slag based on surface free energy,” in 20th COTA International Conference of Transportation Professionals, 2020, pp. 1851-1864.

[8] Y. Yuan, T. R. Lee, “Contact angle and wetting properties,” in Surface science techniques, vol. 51. Springer, 2013, pp. 3-34. doi: 10.1007/978-3-642-34243-1_1

[9] C. Maze, G. Burnet, “A non-linear regression method for calculating surface tension and contact angle from the shape of a sessile drop,” Surface Science, vol. 13, no. 2, pp. 451-470, 1969. doi: 10.1016/0039-6028(69)90204-0

[10] J. Bachmann, R. Horton, R. Van Der Ploeg, S. Woche, “Modified sessile drop method for assessing initial soil–water contact angle of sandy,” Soil Science Society of America Journal, vol. 64, no. 2, pp. 564-567, 2000. doi: 10.2136/sssaj2000.642564x

[11] L. Susana, F. Campaci, A. C. Santomaso, “Wettability of mineral and metallic powders: applicability and limitations of sessile drop method and washburn’s technique,” Powder technology, vol. 226, pp. 68-77, 2012. doi: 10.1016/j.powtec.2012.04.016

[12] A. Bhasin, D. N. Little, “Characterization of aggregate surface energy using the universal sorption device,” Journal of Materials in Civil Engineering, vol. 19, no. 8, pp. 634-641, 2007. doi: 10.1061/(ASCE)0899-1561(2007)19:8(634)

[13] B. M. Kiggundu, F. L. Roberts, “Stripping in hma mixtures: state-of-the-art and critical review of test methods,” National Center for Asphalt Technology, Tech. Rep. NCAT Report 88- 02, 1988.

[14] J. Wei, Y. Zhang, “The application of grey system theory to correlate chemical composition and surface free energy of asphalt binders,” Petroleum Science and Technology, vol. 28, no. 17, pp. 1807-1817, 2010. doi: 10.1080/10916460903226098

[15] J. Wei, F. Dong, Y. Li, Y. Zhang, “Relationship analysis between surface free energy and chemical composition of asphalt binder,” Construction and Building Materials, vol. 71, pp. 116-123, 2014. doi: 10.1016/j.conbuildmat.2014.08.024

[16] I. Jolliffe, “Principal component analysis,” International Encyclopedia of Statistical Science. Heidelberg, Berlín: Springer, 2011, pp. 1094-1096. Doi: 10.1007 / 978-3-642-04898-2_455

[17] R. C. Team et al., “R: A language and environment for statistical computing,” 2013.

[18] A. G. Bunn, “A dendrochronology program library in r (dplr),” Dendrochronologia, vol. 26, no. 2, pp. 115-124, 2008. doi: 10.1016/j.dendro.2008.01.002

[19] A. G. Bunn, “Statistical and visual crossdating in r using the dplr library,” Dendrochronologia, vol. 28, no. 4, pp. 251-258, 2010. doi: 10.1016/j.dendro.2009.12.001

[20] A. Tsanas, M. A. Little, P. E. McSharry, L. O. Ramig, “Accurate telemonitoring of parkinson’s disease progression by noninvasive speech tests,” Nature Precedings, pp. 1, 2010. doi: 10.1038/npre.2009.3920.1

[21] H. Trevor, T. Robert, and F. Jerome, The elements of statistical learning: data mining, inference, and prediction, 2da. Ed. Stanford, CA, USA: Springer, 2009.

[22] L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp. 5-32, 2001. doi: 10.1023/A:1010933404324