Vol. 20 No. 1 (2021): Revista UIS Ingenierías
Thematic editorial

Tribocorrosion: history, properties, applications, and modeling

Darío Yesid Peña-Ballesteros
Universidad Industrial de Santander

Published 2020-11-19

Keywords

  • tribocorrosion,
  • tribology,
  • corrosion,
  • reliability,
  • materials

How to Cite

Peña-Ballesteros, D. Y. (2020). Tribocorrosion: history, properties, applications, and modeling. Revista UIS Ingenierías, 20(1), 239–244. https://doi.org/10.18273/revuin.v20n1-2021020

Abstract

Tribocorrosion is the area of ​​knowledge in charge of studying the union of tribological phenomena and corrosion. This editorial note presents aspects to be highlighted of tribocorrosion, the practical relevance of this field of research for materials science and mechanical engineering is pointed out. The history of tribocorrosion is related, various variables to consider, some fields of application identified, and the multiple challenges that arise in the modeling of tribocorrosion systems are discussed.

Downloads

Download data is not yet available.

References

[1] J. Villanueva et al., “Corrosion, Tribology, and Tribocorrosion Research in Biomedical Implants: Progressive Trend in the Published Literature,” J. Bio- Tribo-Corrosion, vol. 3, no. 1, pp. 1–8, 2017, doi: 10.1007/s40735-016-0060-1

[2] R. I. M. Asri et al., “Corrosion and surface modification on biocompatible metals: A review,” Mater. Sci. Eng. C, vol. 77, pp. 1261–1274, 2017, doi: 10.1016/j.msec.2017.04.102

[3] D. Young, High Temperature Oxidation and Corrosion of Metals, vol. 1. 2015

[4] M. T. Mathew, P. Srinivasa Pai, R. Pourzal, A. Fischer, M. A. Wimmer, “Significance of tribocorrosion in biomedical applications: Overview and current status,” Adv. Tribol., no. December, 2009, doi: 10.1155/2009/250986

[5] W. Q. Toh, X. Tan, A. Bhowmik, E. Liu, S. B. Tor, “Tribochemical characterization and tribocorrosive behavior of CoCrMo alloys: A review,” Materials (Basel)., vol. 11, no. 1, 2017, doi: 10.3390/ma11010030

[6] M. K. Dimah, F. Devesa Albeza, V. Amigó Borrás, A. Igual Muñoz, “Study of the biotribocorrosion behaviour of titanium biomedical alloys in simulated body fluids by electrochemical techniques,” Wear, vol. 294–295, pp. 409–418, 2012, doi: 10.1016/j.wear.2012.04.014

[7] A. López-Ortega, J. L. Arana, R. Bayón, “Tribocorrosion of Passive Materials: A Review on Test Procedures and Standards,” Int. J. Corros., vol. 2018, 2018, doi: 10.1155/2018/7345346

[8] S. Mischler, “Triboelectrochemical techniques and interpretation methods in tribocorrosion: A comparative evaluation,” Tribol. Int., vol. 41, no. 7, pp. 573–583, 2008, doi: 10.1016/j.triboint.2007.11.003

[9] Y. Wang et al., “Improvement in the tribocorrosion performance of CrCN coating by multilayered design for marine protective application,” Appl. Surf. Sci., vol. 528, no. June, p. 147061, 2020, doi: 10.1016/j.apsusc.2020.147061

[10] W. fang CUI, F. juan NIU, Y. ling TAN, G. wu QIN, “Microstructure and tribocorrosion performance of nanocrystalline TiN graded coating on biomedical titanium alloy,” Trans. Nonferrous Met. Soc. China (English Ed., vol. 29, no. 5, pp. 1026–1035, 2019, doi: 10.1016/S1003-6326(19)65011-9

[11] A. I. Costa, L. Sousa, A. C. Alves, F. Toptan, “Tribocorrosion behaviour of bio-functionalized porous Ti surfaces obtained by two-step anodic treatment,” Corros. Sci., vol. 166, no. July 2019, p. 108467, 2020, doi: 10.1016/j.corsci.2020.108467

[12] S. M. Smith and J. L. Gilbert, “Electrochemical and materials aspects of tribocorrosion systems,” 2006, doi: 10.1088/0022-3727/39/15/S01.

[13] C. Dini, R. C. Costa, C. Sukotjo, C. G. Takoudis, M. T. Mathew, V. A. R. Barão, “Progression of Bio-Tribocorrosion in Implant Dentistry,” Front. Mech. Eng., vol. 6, no. January, 2020, doi: 10.3389/fmech.2020.00001

[14] S. Cao and S. Mischler, “Modeling tribocorrosion of passive metals – A review,” Curr. Opin. Solid State Mater. Sci., vol. 22, no. 4, pp. 127–141, 2018, doi: 10.1016/j.cossms.2018.06.001

[15] S. Fischer, Alfonso; Mischler, “Tribocorrosion : fundamentals , materials,” J. Phys. D. Appl. Phys., vol. 39, no. 15, 2006.

[16] A. Salicio-Paz et al., “Impact of the multilayer approach on the tribocorrosion behaviour of nanocrystalline electroless nickel coatings obtained by different plating modes,” Wear, vol. 456–457, no. June, p. 203384, 2020, doi: 10.1016/j.wear.2020.203384

[17] Y. Zhu, M. Dong, J. Li, L. Wang, “The improved corrosion and tribocorrosion properties of TiSiN/Ag by thermal treatment,” Surf. Coatings Technol., vol. 385, no. January, p. 125437, 2020, doi: 10.1016/j.surfcoat.2020.125437

[18] K. M. Li, K. J. Song, J. Guan, F. Yang, J. Liu, “Tribocorrosion behavior of a Ti6Al4V alloy electromagnetic induction nitride layer in a fluorine-containing solution,” Surf. Coatings Technol., vol. 386, no. January, pp. 1–15, 2020, doi: 10.1016/j.surfcoat.2020.125506

[19] F. Mindivan, M. P. Yildirim, F. Bayindir, H. Mindivan, “Corrosion and tribocorrosion behavior of cast and machine milled Co-Cr alloys for biomedical applications,” Acta Phys. Pol. A, vol. 129, no. 4, pp. 701–704, 2016, doi: 10.12693/APhysPolA.129.701

[20] E. Haruman, Y. Sun, M. S. Adenan, “A comparative study of the tribocorrosion behaviour of low temperature nitrided austenitic and duplex stainless steels in NaCl solution,” Tribol. Int., vol. 151, no. January, p. 106412, 2020, doi: 10.1016/j.triboint.2020.106412