Characterization of metallic particles extracted from fly ash of a thermoelectric plant in Boyacá-Colombia
Published 2021-06-07
Keywords
- fly ash,
- cenospheres,
- ferrospheres,
- magnetite,
- hematite
- mullite,
- morphological characterization ...More
How to Cite
Abstract
In this work, it was studied the by-products of fly ashes, obtained from a thermoelectric power station in Boyacá, Colombia, through magnetic separation. The morphological characterization of the particles was performed by a scanning electron microscopy. Its elemental composition and crystalline structure were studied through energy dispersive spectroscopy and an X-ray diffraction, respectively. The results obtained show the presence of ferrospheres and cenospheres, which are irregular and rough compounds with a high iron content. The mineralogical phases present in the samples are mainly magnetite and hematite, with some traces of mullite. These phases can provide magnetic properties and extend the range of applications of these particles using a simple separation process in fly ashes.
Downloads
References
[2] M. Santa María, “El Sector Eléctrico en Colombia: Recomendaciones de Ajuste para un Sistema Exitoso,”Econcept, Bogotá, 2019.
[3] W. A. Bautista-Ruiz, M. Díaz-Lagos, S. A. Martínez-Ovalle, “Caracterización de las cenizas volantes de una planta termoeléctrica para su posible uso como aditivo en la fabricación de cemento,” Rev. Investig. Desarro. E Innovación, vol. 8, no. 1, p. 135, 2017. doi: 10.19053/20278306.v8.n1.2017.7374
[4] F. Reyes Caballero, S. A. Martínez Ovalle, M. Moreno Gutiérrez, “Mössbauer characterization of feed coal , ash and fly ash from a thermal power plant,” in Hyperfine Interactions, vol. 232, pp. 141–148, 2015. doi: 10.1007/s10751-015-1140-1
[5] A. María et al., “Central de generación térmica termopaipa,” Paipa, 2015.
[6] S. K. Ghosh, V. Kumar, Circular economy and fly ash management. Springer Singapore, 2019. doi: 10.1007/978-981-15-0014-5
[7] S. Kang, M. T. Ley, Z. Lloyd, T. Kim, “Using the particle model to predict electrical resistivity performance of fly ash in concrete,” Constr. Build. Mater., vol. 261, p. 119975, 2020. doi: 10.1016/j.conbuildmat.2020.119975
[8] F. Li et al., “Direct synthesis of carbon nanotubes on fly ash particles to produce carbon nanotubes/fly ash composites,” Front. Struct. Civ. Eng., vol. 13, no. 6, pp. 1405–1414, 2019. doi: 10.1007/s11709-019-0564-0
[9] G. I. Supelano et al., “Synthesis of magnetic zeolites from recycled fly ash for adsorption of methylene blue,” Fuel, vol. 263, p. 116800, 2020. doi: 10.1016/j.fuel.2019.116800
[10] C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods, vol. 9, no. 7, pp. 671–675, 2012. doi: 10.1038/nmeth.2089
[11] Q. F. Xue, S. G. Lu, “Microstructure of ferrospheres in fly ashes: SEM, EDX and ESEM analysis,” J. Zhejiang Univ. Sci. A, vol. 9, no. 11, pp. 1595–1600, 2008. doi: 10.1631/jzus.A0820051
[12] V. V. Zyryanov, D. V. Zyryanov, “Complex processing of pulverized fly ash by dry separation methods,” J. Environ. Prot. (Irvine,. Calif)., vol. 1, no. 3, pp. 293–301, 2010. doi: 10.4236/jep.2010.13035
[13] L. Santaella, “Caracterización física, química y mineralógica de las cenizas volantes,” Cienc. e Ing. Neogranadina, vol. 10, pp. 47–62, 2001.
[14] O. A. Bajukov, N. N. Anshits, M. I. Petrov, A. D. Balaev, A. G. Anshits, “Composition of ferrospinel phase and magnetic properties of microspheres and cenospheres from fly ashes,” Mater. Chem. Phys., vol. 114, no. 1, pp. 495–503, 2009.
[15] E. V. Sokol, V. M. Kalugin, E. N. Nigmatulina, N. I. Volkova, A. E. Frenkel, N. V. Maksimova, “Ferrospheres from fly ashes of Chelyabinsk coals: Chemical composition, morphology and formation conditions,” Fuel, vol. 81, no. 7, pp. 867–876, 2002. doi: 10.1016/S0016-2361(02)00005-4
[16] G. L. Golewski, “Improvement of fracture toughness of green concrete as a result of addition of coal fly ash. Characterization of fly ash microstructure,” Mater. Charact., vol. 134, pp. 335–346, 2017.
[17] T. Wang, T. Ishida, R. Gu, “A study of the influence of crystal component on the reactivity of low-calcium fly ash in alkaline conditions based on SEM-EDS,” Constr. Build. Mater., vol. 243, p. 118227, 2020. doi: 10.1016/j.conbuildmat.2020.118227
[18] B. Valentim et al., “Characteristics of ferrospheres in fly ashes derived from Bokaro and Jharia (Jharkand, India) coals,” Int. J. Coal Geol., vol. 153, pp. 52–74, 2016.
[19] S. Chen et al., “Porous mullite ceramics with a fully closed-cell structure fabricated by direct coagulation casting using fly ash hollow spheres/kaolin suspension,” Ceram. Int., vol. 46, no. 11, pp. 17508–17513, 2020. doi: 10.1016/j.ceramint.2020.04.046
[20] B. G. Kutchko, A. G. Kim, “Fly ash characterization by SEM-EDS,” Fuel, vol. 85, pp. 2537–2544, 2006. doi: 10.1016/j.fuel.2006.05.016
[21] A. G. Anshits, O. M. Sharonova, N. N. Anshits, “Ferrospheres from fly ashes: Composition and catalytic properties in high-temperature oxidation of methane,” in World of Coal Ash, 2011, p. 21.
[22] D. Valeev, A. Mikhailova, A. Atmadzhidi, “Kinetics of iron extraction from coal fly ash by hydrochloric acid leaching,” Metals (Basel)., vol. 8, no. 7, pp. 1–9, 2018. doi: 10.3390/met8070533
[23] M. Fu, J. Liu, X. Dong, L. Zhu, Y. Dong, S. Hampshire, “Waste recycling of coal fly ash for design of highly porous whisker-structured mullite ceramic membranes,” J. Eur. Ceram. Soc., vol. 39, no. 16, pp. 5320–5331, 2019. doi: 10.1016/j.jeurceramsoc.2019.08.042