Published 2022-02-09
Keywords
- shape descriptors,
- optical metrology,
- osteosynthesis,
- control system,
- computer vision
- image analysis,
- image processing,
- open source software,
- profilometry,
- quality control ...More
How to Cite
Copyright (c) 2022 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
The metal screws used in osteosynthesis are fabricated with precise dimensions in order to prevent complications in the surgical procedure, and to optimize costs and production time. This research work proposes a control system consisting of a USB digital microscope, a LED lighting base, and a graphical user interface (GUI) developed in ImageJ (open-source software), the main objective in this work is validate metrologically the screws dimensions quality. In the results, the screws length and width, obtained with the proposed system, and the same measurement obtained with a caliper were compared as a metrological validation procedure.
Downloads
References
- E. Ramos-Maza, F. García-Estrada, C. Domínguez-Barrios, G. Chávez-Covarrubias, G. Meza-Reyes, I. Buffo-Sequeira, “Principios biomecánicos para la osteosíntesis, re-evolución,” Acta Ortopédica Mexicana, vol. 30, no. S1, pp. S1–S8, 2016.
- E. Barrena, J. Ampuero, Traumatología Y Ortopedia: Generalidades. España: Elsevier Health Sciences, 2019.
- L. Rodríguez, D. Manzanero, W. Campos, V. Millano, C. Valbuena, “Falla de implantes ortopédicos metálicos en hospitales de la ciudad de Maracaibo, Venezuela,” Multiciencias, vol. 11, no. 1, pp. 85–91, 2011.
- Implants for surgery– metal bone screws with hexagonal drive connection, spherical undersurfaceof head, asymmetrical thread – dimensions, Standard ISO TR 5835: 1991, [En línea]. Disponible en: https://www.iso.org/standard/12001.html
- L. F. V. Jiménez, “Los costos de la mala calidad como quinto elemento del costo: aproximación teórica en la gestión de la competitividad en medio de la convergencia contable,” Revista de la Facultad de Ciencias Económicas: Investigación y Reflexión, vol. 24, no. 1, pp. 63–84, 2016, doi: https://doi.org/10.18359/RFCE.1622
- F. M. Gryna, R. C. H. Chua, J. A. Defeo, J. P. Magaña, Método Juran: análisis y planeación de la calidad. New York, USA: McGraw-hill, 2007.
- W. Burger, M. J. Burge, Digital Image Processing. London: Springer London, 2016, doi: https://doi.org/10.1007/978-1-4471-6684-9
- R. Ramzi, E. A. Bakar, “Optical wear inspection of countersink drill bit for drilling operation in aircraft manufacturing and assembly industry: A method,” IOP Conference Series: Materials Science and Engineering, vol. 370, p. 012041, 2018, doi: https://doi.org/10.1088/1757-899X/370/1/012041
- M. Guerrieri, G. Parla, C. Celauro, “Digital image analysis technique for measuring railway track defects and ballast gradation,” Measurement, vol. 113, pp. 137–147, 2018, doi: https://doi.org/10.1016/j.measurement.2017.08.040
- LeeHoonsoo, H. Quoc, ParkEunsoo, BaeHyungJin, BaekInsuck, K. S., MoChangyeun, ChoByoung-Kwan, “Machine vision technique for rapid measurement of soybean seed vigor,” Journal of Biosystems Engineering, vol. 42, no. 3, pp. 227–233, 2017, doi: https://doi.org/10.5307/JBE.2017.42.3.227
- J. Debayle, “Geometrical and morphometrical tools for the inclusion analysis of metallic alloys,” Metallurgical Research & Technology, vol. 116, no. 5, p. 508, 2019, doi: https://doi.org/10.1051/metal/2019011
- R. Ramzi, E. A. Bakar, M. Mahmod, “Drill bit flank wear monitoring system in composite drilling process using image processing,” en 10th International Conference on Robotics, Vision, Signal Processing and Power Applications, pp. 551–557, 2019, doi: https://doi.org/10.1007/978-981-13-6447-170
- J. C. Herrera, S. M. Medina, K. Beleño, O. E. Gualdrón, “Diseño de un sistema automático de selección de frutos de café mediante técnicas de visión artificial,” Revista UIS Ingenierías, vol. 15, no. 1, pp. 7–14, 2016, https://doi.org/10.18273/revuin.v15n1-2016001
- L. P. Herrera-Baquero, F. A. Prieto-Ortiz, “Metodología para la inspección de la herramienta en el taladrado de piezas,” Revista Investig. Desarro. Innov., vol. 9, no. 1, pp. 187-200, 2018, doi: https://doi.org/10.19053/20278306.v9.n1.2018.7937
- C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, K. W. Eliceiri, “Imagej2: Imagej for the next generation of scientific image data,” BMC bioinformatics, vol. 18, no. 1, 2017, doi: https://doi.org/10.1186/s12859-017-1934-z
- C. S. Ridler TW, “Picture thresholding using an iterative selection method,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 8, no. 8, pp. 630–632, 1978, doi: https://doi.org/10.1109/TSMC.1978.4310039
- E. Gadelmawla, “Computer vision algorithms for measurement and inspection of external screw threads,” Measurement, vol. 100, pp. 36 – 49, 2017, doi: https://doi.org/10.1016/j.measurement.2016.12.034