Vol. 21 No. 1 (2022): Revista UIS Ingenierías
Articles

Two-dimensional metric system for metal screws used in osteosynthesis

Ivan Rodrigo Castillo-Cañas
Universidad Industrial de Santander
Damar Nicolás Rojas-Chacón
Universidad Industrial de Santander
Jaime Enrique Meneses- Fonseca
Universidad Industrial de Santander

Published 2022-02-09

Keywords

  • shape descriptors,
  • optical metrology,
  • osteosynthesis,
  • control system,
  • computer vision,
  • image analysis,
  • image processing,
  • open source software,
  • profilometry,
  • quality control
  • ...More
    Less

How to Cite

Castillo-Cañas, I. R., Rojas-Chacón, D. N., Meneses- Fonseca, J. E., & González Gómez, A. L. (2022). Two-dimensional metric system for metal screws used in osteosynthesis. Revista UIS Ingenierías, 21(1), 201–210. https://doi.org/10.18273/revuin.v21n1-2022015

Abstract

The metal screws used in osteosynthesis are fabricated with precise dimensions in order to prevent complications in the surgical procedure, and to optimize costs and production time. This research work proposes a control system consisting of a USB digital microscope, a LED lighting base, and a graphical user interface (GUI) developed in ImageJ (open-source software), the main objective in this work is validate metrologically the screws dimensions quality. In the results, the screws length and width, obtained with the proposed system, and the same measurement obtained with a caliper were compared as a metrological validation procedure.

Downloads

Download data is not yet available.

References

  1. E. Ramos-Maza, F. García-Estrada, C. Domínguez-Barrios, G. Chávez-Covarrubias, G. Meza-Reyes, I. Buffo-Sequeira, “Principios biomecánicos para la osteosíntesis, re-evolución,” Acta Ortopédica Mexicana, vol. 30, no. S1, pp. S1–S8, 2016.
  2. E. Barrena, J. Ampuero, Traumatología Y Ortopedia: Generalidades. España: Elsevier Health Sciences, 2019.
  3. L. Rodríguez, D. Manzanero, W. Campos, V. Millano, C. Valbuena, “Falla de implantes ortopédicos metálicos en hospitales de la ciudad de Maracaibo, Venezuela,” Multiciencias, vol. 11, no. 1, pp. 85–91, 2011.
  4. Implants for surgery– metal bone screws with hexagonal drive connection, spherical undersurfaceof head, asymmetrical thread – dimensions, Standard ISO TR 5835: 1991, [En línea]. Disponible en: https://www.iso.org/standard/12001.html
  5. L. F. V. Jiménez, “Los costos de la mala calidad como quinto elemento del costo: aproximación teórica en la gestión de la competitividad en medio de la convergencia contable,” Revista de la Facultad de Ciencias Económicas: Investigación y Reflexión, vol. 24, no. 1, pp. 63–84, 2016, doi: https://doi.org/10.18359/RFCE.1622
  6. F. M. Gryna, R. C. H. Chua, J. A. Defeo, J. P. Magaña, Método Juran: análisis y planeación de la calidad. New York, USA: McGraw-hill, 2007.
  7. W. Burger, M. J. Burge, Digital Image Processing. London: Springer London, 2016, doi: https://doi.org/10.1007/978-1-4471-6684-9
  8. R. Ramzi, E. A. Bakar, “Optical wear inspection of countersink drill bit for drilling operation in aircraft manufacturing and assembly industry: A method,” IOP Conference Series: Materials Science and Engineering, vol. 370, p. 012041, 2018, doi: https://doi.org/10.1088/1757-899X/370/1/012041
  9. M. Guerrieri, G. Parla, C. Celauro, “Digital image analysis technique for measuring railway track defects and ballast gradation,” Measurement, vol. 113, pp. 137–147, 2018, doi: https://doi.org/10.1016/j.measurement.2017.08.040
  10. LeeHoonsoo, H. Quoc, ParkEunsoo, BaeHyungJin, BaekInsuck, K. S., MoChangyeun, ChoByoung-Kwan, “Machine vision technique for rapid measurement of soybean seed vigor,” Journal of Biosystems Engineering, vol. 42, no. 3, pp. 227–233, 2017, doi: https://doi.org/10.5307/JBE.2017.42.3.227
  11. J. Debayle, “Geometrical and morphometrical tools for the inclusion analysis of metallic alloys,” Metallurgical Research & Technology, vol. 116, no. 5, p. 508, 2019, doi: https://doi.org/10.1051/metal/2019011
  12. R. Ramzi, E. A. Bakar, M. Mahmod, “Drill bit flank wear monitoring system in composite drilling process using image processing,” en 10th International Conference on Robotics, Vision, Signal Processing and Power Applications, pp. 551–557, 2019, doi: https://doi.org/10.1007/978-981-13-6447-170
  13. J. C. Herrera, S. M. Medina, K. Beleño, O. E. Gualdrón, “Diseño de un sistema automático de selección de frutos de café mediante técnicas de visión artificial,” Revista UIS Ingenierías, vol. 15, no. 1, pp. 7–14, 2016, https://doi.org/10.18273/revuin.v15n1-2016001
  14. L. P. Herrera-Baquero, F. A. Prieto-Ortiz, “Metodología para la inspección de la herramienta en el taladrado de piezas,” Revista Investig. Desarro. Innov., vol. 9, no. 1, pp. 187-200, 2018, doi: https://doi.org/10.19053/20278306.v9.n1.2018.7937
  15. C. T. Rueden, J. Schindelin, M. C. Hiner, B. E. DeZonia, A. E. Walter, E. T. Arena, K. W. Eliceiri, “Imagej2: Imagej for the next generation of scientific image data,” BMC bioinformatics, vol. 18, no. 1, 2017, doi: https://doi.org/10.1186/s12859-017-1934-z
  16. C. S. Ridler TW, “Picture thresholding using an iterative selection method,” IEEE Transactions on Systems, Man, and Cybernetics, vol. 8, no. 8, pp. 630–632, 1978, doi: https://doi.org/10.1109/TSMC.1978.4310039
  17. E. Gadelmawla, “Computer vision algorithms for measurement and inspection of external screw threads,” Measurement, vol. 100, pp. 36 – 49, 2017, doi: https://doi.org/10.1016/j.measurement.2016.12.034