Vol. 21 No. 1 (2022): Revista UIS Ingenierías
Articles

Analysis of high vehicular flow for an access road to Medellín using agent-based simulation

Johana Orozco-Rivera
Instituto Tecnológico Metropolitano
Yony Ceballos
Universidad de Antioquia
Julian Andrés Castillo-Grisales
Institución Universitaria Digital de Antioquia

Published 2021-11-22

Keywords

  • traffic flow ,
  • urban congestion,
  • agent-based simulation,
  • vehicle dynamics

How to Cite

Orozco-Rivera , J. ., Ceballos , Y. ., & Castillo-Grisales , J. A. (2021). Analysis of high vehicular flow for an access road to Medellín using agent-based simulation. Revista UIS Ingenierías, 21(1), 73–82. https://doi.org/10.18273/revuin.v21n1-2022006

Abstract

In the municipality of Medellín, the road that crosses Robledo Park has played an important role as an access route to different neighborhoods in the west, and the Antioquia western subregions. Every day, hundreds of vehicles pass through, identifying it as the only access road; a situation that at certain times of the day becomes slow. Although alternative routes are sought, satisfactory results have not been found since the only possibility is equal or more congested than the first. In this document, the proposal was to carry out an analysis of the problem of road congestion presented on the road in the east-west direction, through agent-based simulation. For the simulation model, the individuals were characterized by relevant traits, and, in turn, an evaluation of the behavior was developed for the improvement in road capacity by enlargement, and the respective validation of the results obtained through this alternative. As a result, it was observed that the adaptation of the road through its extension facilitates and improves the mobility conditions, increasing its travel speed by up to 20% and optimizing the vehicular capacity of the route to double at peak times.

Downloads

Download data is not yet available.

References

  1. B. Giles-Corti, B. Zapata-Diomedi, A. Jafari, A. Both, L. Gunn, “Could smart research ensure healthy people in disrupted cities?”, J. Transp. Heal., vol. 19, pp. 100931, 2020, doi: https://doi.org/10.1016/j.jth.2020.100931.
  2. S. El Hamdani, N. Benamar, M. Younis, “A protocol for pedestrian crossing and increased vehicular flow in smart cities”, J. Intell. Transp. Syst. Technol. Planning, Oper., vol. 24, no. 5, pp. 514-533, 2020, doi: https://doi.org/10.1080/15472450.2019.1683451.
  3. A. Mourad, J. Puchinger, C. Chu, “A survey of models and algorithms for optimizing shared mobility,” Transp. Res. Part B Methodol., vol. 123, pp. 323-346, 2019, doi: https://doi.org/10.1016/j.trb.2019.02.003.
  4. L. Alekszejenkó, T. Dobrowiecki, “Alleviating Congestion in Restricted Urban Areas with Cooperative Intersection Management”, en Advances in Intelligent Systems and Computing, vol. 1250, 2021, pp. 34-52, doi: https://doi.org/10.1007/978-3-030-55180-3_3.
  5. P. Minh Duc et al., “HoanKiemAir: Simulating impacts of urban management practices on traffic and air pollution using a tangible agent-based model”, en Conferencia Internacional de la RIVF sobre Tecnologías de la Computación y la Comunicación (RIVF), 2020, doi: https://doi.org/10.1109/RIVF48685.2020.9140787.
  6. F. Orsi, A. Scuttari, A. Marcher, “How much traffic is too much? Finding the right vehicle quota for a scenic mountain road in the Italian Alps”, Case Stud. Transp. Policy, vol. 8, no. 4, pp. 1270-1284, 2020, doi: https://doi.org/10.1016/j.cstp.2020.08.007.
  7. A. Grignard et al., “The Impact of New Mobility Modes on a City: A Generic Approach Using ABM”, en Springer Proceedings in Complexity, 2018, pp. 272-280, doi: https://doi.org/10.1007/978-3-319-96661-8_29.
  8. C. A. Moncada, J. P. Bocarejo, D. A. Escobar, “Evaluación de Impacto en la motorización como Consecuencia de las Políticas de Restricción Vehicular, Aproximación Metodológica para el caso de Bogotá y Villavicencio - Colombia”, Inf. tecnológica, vol. 29, no. 1, pp. 161-170, 2018, doi: http://dx.doi.org/10.4067/S0718-07642018000100161.
  9. W. X. Ci, S. K. Ahmed, M. Ieee, F. Zulkifli, A. K. Ramasamy, “Traffic Flow Simulation at an Unsignalized T-Junction using Monte Carlo Markov Chains”, en IEEE International Conference on Signal and Image Processing Applications, 2009, pp. 346–351, doi: https://doi.org/10.1109/ICSIPA.2009.5478675.
  10. U. Head, B. Rand, W. Wilensky, “NetLogo Traffic Basic Adaptive Individuals model”, 2015, [En línea]. Disponible en: http://ccl.northwestern.edu/netlogo/models/TrafficBasicAdaptiveIndividuals
  11. S. C. Carrizo, “Biocombustibles en Argentina, entre Necesidades Energéticas e Intereses Agroindustriales”, PAMPA, vol. 4, no. 4, pp. 229-248, 2008, doi: https://doi.org/10.14409/pampa.v1i4.3159.
  12. B. Jiang, C. Yang, T. Terano, “Adaptive agent model with hybrid routing selection strategy for improving the road-network congestion problem”, J. Harbin Inst. Technol. New Ser., vol. 22, no. 6, pp. 92-102, 2015, doi: https://doi.org/10.11916/j.issn.1005-9113.2015.06.013.
  13. G. N. Gilbert y K. G. Troitzsch, Simulation for the social scientist, 1st ed. New york: Open University Press, 2005.
  14. N. Gilbert y P. Terna, “How to build and use agent-based models in social science”, Mind Soc., vol. 1, no. 1, pp. 57-72, 2000, doi: https://doi.org/10.1007/BF02512229.
  15. A. J. Heppenstall, A. T. Crooks, L. M. See, M. Batty, Agent-based models of geographical systems. London: Springer Science & Business Media, 2011.
  16. A. Crooks, Agent-based Models and Geographical Information Systems, en "Geocomputación: un manual práctico". Live Oaks, CA, USA: AGE Publications Ltd, Thousand, 2015, pp. 63-77.
  17. U. Wilensky, W. Rand, An introduction to agent-based modeling, and engineered complex systems with NetLogo. MA, USA: The MIT Press, 2015.
  18. J. G. Polhill, D. Parker, D. Brown, V. Grimm, “Using the ODD Protocol for Describing Three Agent-Based Social Simulation Models of Land-Use Change”, J. Artif. Soc. Soc. Simul., vol. 11, no. 2, pp. 3, 2008.
  19. V. Grimm, U. Berger, D. L. DeAngelis, J. G. Polhill, J. Giske, S. F. Railsback, “The ODD protocol: A review and first update”, Ecol. Modell., vol. 221, no. 23, pp. 2760-2768, 2010, doi: https://doi.org/10.1016/j.ecolmodel.2010.08.019.
  20. V. Grimm et al., “The ODD protocol for describing agent-based and other simulation models: A second update to improve clarity, replication, and structural realism”, Jasss, vol. 23, no. 2, pp. 7, 2020, doi: https://doi.org/10.18564/jasss.4259.
  21. DANE, “PIB por departamento”, [En línea]. Disponible en: https://www.dane.gov.co/index.php/estadisticas-por-tema/cuentas-nacionales/cuentas-nacionales-departamentales.
  22. Ministerio de Transporte de Colombia, Ley 769 de 2002 - Código Nacional de Tránsito Terrestre. 2002, pp. 57.
  23. U. Wilensky, NetLogo: Center for Connected Learning Comp.-Based Modeling. Evanston, IL: Universidad del Noroeste., vol. 158, 1999.
  24. “Velocidad y tiempo de viaje GT,” Secretaría de Movilidad de Medellín - Observatorio de Movilidad, 2020.
  25. S. Robinson, “A statistical process control approach to selecting a warm-up period for a discrete-event simulation”, Eur. J. Oper. Res., vol. 176, no. 1, pp. 332-346, 2007, doi: https://doi.org/10.1016/j.ejor.2005.07.014.
  26. F. E. Ritter, M. J. Schoelles, K. S. Quigley, L. Cousino, "Determining the Number of Simulation Runs: Treating Simulations as Theories by Not Sampling Their Behavior", en Rothrock L., Narayanan S. (eds) Human-in-the-Loop Simulations. Springer, London, 2011, pp. 97-116, doi: https://doi.org/10.1007/978-0-85729-883-6_5.