Published 2021-11-23
Keywords
- Complementary Metal Oxide Semiconductor (CMOS) technology,
- energy conversion,
- energy harvesters,
- health monitoring devices,
- piezoelectric transducer
- portable devices,
- power conversion efficiency,
- reconfigurable rectifier,
- transmission gate (TG),
- voltage conversion efficiency ...More
How to Cite
Copyright (c) 2021 Revista UIS Ingenierías
This work is licensed under a Creative Commons Attribution-NoDerivatives 4.0 International License.
Abstract
Wearable energy harvesters have potential application in the conversion of human-motion energy into electrical energy to power smart health-monitoring devices, the textile industry, smartwatches, and glasses. These energy harvesters require optimal rectifier circuits that maximize their charging efficiencies. In this study, we present the design of a novel complementary metal-oxide semiconductor (CMOS) reconfigurable rectifier for wearable piezoelectric energy harvesters that can increase their charging efficiencies. The designed rectifier is based on standard 0.18 µm CMOS process technology considering a geometrical pattern with a total silicon area of 54.765 µm x 86.355 µm. The proposed rectifier circuit has two transmission gates (TG) that are composed of four rectifier transistors with a charge of 45 kΩ, a minimum input voltage of 500 mV and a maximum voltage of 3.3 V. Results of numerical simulations of the rectifier performance indicate a voltage conversion efficiency of 99.4% and a power conversion efficiency up to 63.3%. The proposed rectifier can be used to increase the charging efficiency of wearable piezoelectric energy harvesters.
Downloads
References
- A. Goldberg, J. W. K. Ho, “Hactive: a smartphone application for heart rate profiling,” Biophys. Rev., vol. 12, no. 4, pp. 777-779, 2020, doi: https://doi.org/10.1007/s12551-020-00731-3.
- S. Ardalan, M. Hosseinifard, M. Vosough, H. Golmohammadi, “Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers,” Biosens. Bioelectron., vol. 168, pp. 112450, 2020, doi: https://doi.org/10.1016/j.bios.2020.112450.
- S. B. Baker, W. Xiang, I. Atkinson, “Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities,” in IEEE Access, vol. 5. Institute of Electrical and Electronics Engineers Inc., 2017, pp. 26521–26544, doi: https://doi.org/10.1109/ACCESS.2017.2775180.
- W. Tang, J. Ren, K. Deng, Y. Zhang, “Secure Data Aggregation of Lightweight E-Healthcare IoT Devices with Fair Incentives,” IEEE Internet Things J., vol. 6, no. 5, pp. 8714-8726, 2019, doi: https://doi.org/10.1109/JIOT.2019.2923261.
- A. M. Elmisery, S. Rho, M. Aborizka, “A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services,” Cluster Comput., vol. 22, no. 1, pp. 1611-1638, 2019, doi: https://doi.org/10.1007/s10586-017-1298-1.
- A. S. Dahiya et al., “Energy autonomous wearable sensors for smart healthcare: A review,” Journal of The Electrochemical Society, vol. 167, no. 3, pp. 037516, 2019, doi: https://doi.org/10.1149/2.0162003jes.
- X. Li, E. S. Rogers, S. Nabavi, L. Zhang, “Effect of Varying Threshold Voltage on Efficiency of CMOS Rectifiers for Piezoelectric Energy Harvesting Applications,” in Canadian Conference on Electrical and Computer Engineering, 2020, vol. 2020-August, doi: https://doi.org/10.1109/CCECE47787.2020.9255679.
- W. L. Wu, C. Y. Yang, D. A. Wang, “A Flipping Active-Diode Rectifier for Piezoelectric-Vibration Energy-Harvesting,” in 2020 European Conference on Circuit Theory and Design (ECCTD), Sep. 2020, pp. 1-4, doi: https://doi.org/10.1109/ECCTD49232.2020.9218313.
- T. Oh, S. K. Islam, G. To, M. Mahfouz, “Powering wearable sensors with a low-power CMOS piezoelectric energy harvesting circuit,” in 2017 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2017 - Proceedings, Jul. 2017, pp. 308-313, doi: https://doi.org/10.1109/MeMeA.2017.7985894.
- H. Lee, J. S. Roh, “Charging device for wearable electromagnetic energy-harvesting textiles,” Fash. Text., vol. 8, no. 5, pp. 1-10, 2021, doi: https://doi.org/10.1186/s40691-020-00233-6.
- A. Virattiya, B. Knobnob, M. Kumngern, “CMOS precision full-wave and half-wave rectifier,” in Proceedings - 2011 IEEE International Conference on Computer Science and Automation Engineering, CSAE 2011, vol. 4, pp. 556-559, doi: https://doi.org/10.1109/CSAE.2011.5952911.
- N. A. Wahab, M. K. M. Salleh, N. Othman, M. F. A. Khalid, N. M. Hidayat, “High efficiency CMOS rectifier for energy harvesting,” in IEACon 2016 - 2016 IEEE Industrial Electronics and Applications Conference, 2017, pp. 123-127, doi: https://doi.org/10.1109/IEACON.2016.8067367.
- H. K. Cha, W. T. Park, M. Je, “A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 59, no. 7, pp. 409-413, 2012, doi: https://doi.org/10.1109/TCSII.2012.2198977.
- S. Guo, H. Lee, “An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796-1804, 2009, doi: https://doi.org/10.1109/JSSC.2009.2020195.
- X. D. Do, C. J. Jeong, H. H. Nguyen, S. K. Han, S. G. Lee, “A high efficiency piezoelectric energy harvesting system,” in 2011 International SoC Design Conference, ISOCC 2011, pp. 389-392, doi: https://doi.org/10.1109/isocc.2011.6138792.
- G. D. Szarka, B. H. Stark, S. G. Burrow, “Review of power conditioning for kinetic energy harvesting systems,” IEEE Transactions on Power Electronics, vol. 27, no. 2. pp. 803-815, 2012, doi: https://doi.org/10.1109/TPEL.2011.2161675.
- M. M. Mano, M. D. Ciletti, Diseño Digital. 5th ed. Pearson Education: Ciudad de México, México, 2013.
- R. J. Tocci, N. S. Widmer, G. L. Moss, Sistemas Digitales Principios y Aplicaciones. 8th ed. Pearson Education: Ciudad de México, México, 2017.
- A. Costilla Reyes, A. Abuellil, J. J. Estrada-Lopez, S. Carreon-Bautista, E. Sanchez-Sinencio, “Reconfigurable system for electromagnetic energy harvesting with inherent activity sensing capabilities for wearable technology,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 8, pp. 1302-1306, 2019, doi: https://doi.org/10.1109/TCSII.2018.2884613.
- Y. Sun, I. Y. Lee, C. J. Jeong, S. K. Han, S. G. Lee, “An comparator based active rectifier for vibration energy harvesting systems,” in 13ª International Conference on Advanced Communication Technology, ICACT, 2011, pp. 1404-1408.
- T. Oh, S. K. Islam, M. Mahfouz, G. To, “A Low-Power CMOS Piezoelectric Transducer Based Energy Harvesting Circuit for Wearable Sensors for Medical Applications,” J. Low Power Electron. Appl., vol. 7, no. 4, pp. 33, 2017, doi: https://doi.org/10.3390/jlpea7040033.
- L. Huang et al., “Fiber-Based Energy Conversion Devices for Human-Body Energy Harvesting,” Adv. Mater., vol. 32, no. 5, pp. 1902034, 2020, doi: https://doi.org/10.1002/adma.201902034.
- J. Wang, Z. Yang, Z. Zhu, Y. Yang, “An ultra-low-voltage rectifier for PE energy harvesting applications,” J. Semicond., vol. 37, no. 2, pp. 025004, 2016, doi: https://doi.org/10.1088/1674-4926/37/2/025004.
- X. D. Do, H. H. Nguyen, S. K. Han, D. S. Ha, S. G. Lee, “A self-powered high-efficiency rectifier with automatic resetting of transducer capacitance in piezoelectric energy harvesting systems,” IEEE Trans. Very Large Scale Integr. Syst., vol. 23, no. 3, pp. 444-453, 2015. doi: https://doi.org/10.1109/TVLSI.2014.2312532.