Vol. 21 No. 1 (2022): Revista UIS Ingenierías
Articles

A Novel CMOS reconfigurable rectifier for wearable piezoelectric energy harvesters

Suany Vázquez-Valdés
Universidad Veracruzana
Raúl Juárez-Aguirre
Universidad Veracruzana
Rosa Woo-García
Universidad Veracruzana
Primavera Argüelles-Lucho
Universidad Veracruzana
Agustín Herrera-May
Universidad Veracruzana
Johan Jair Estrada-López
Universidad Autónoma de Yucatán
Francisco López-Huerta
Universidad Veracruzana

Published 2021-11-23

Keywords

  • Complementary Metal Oxide Semiconductor (CMOS) technology,
  • energy conversion,
  • energy harvesters,
  • health monitoring devices,
  • piezoelectric transducer,
  • portable devices,
  • power conversion efficiency,
  • reconfigurable rectifier,
  • transmission gate (TG),
  • voltage conversion efficiency
  • ...More
    Less

How to Cite

Vázquez-Valdés , S. ., Juárez-Aguirre , R. ., Woo-García , R. ., Argüelles-Lucho , P. ., Herrera-May , A. ., Estrada-López , J. J. ., & López-Huerta , F. . (2021). A Novel CMOS reconfigurable rectifier for wearable piezoelectric energy harvesters. Revista UIS Ingenierías, 21(1), 103–112. https://doi.org/10.18273/revuin.v21n1-2022009

Abstract

Wearable energy harvesters have potential application in the conversion of human-motion energy into electrical energy to power smart health-monitoring devices, the textile industry, smartwatches, and glasses. These energy harvesters require optimal rectifier circuits that maximize their charging efficiencies. In this study, we present the design of a novel complementary metal-oxide semiconductor (CMOS) reconfigurable rectifier for wearable piezoelectric energy harvesters that can increase their charging efficiencies. The designed rectifier is based on standard 0.18 µm CMOS process technology considering a geometrical pattern with a total silicon area of 54.765 µm x 86.355 µm. The proposed rectifier circuit has two transmission gates (TG) that are composed of four rectifier transistors with a charge of 45 kΩ, a minimum input voltage of 500 mV and a maximum voltage of 3.3 V. Results of numerical simulations of the rectifier performance indicate a voltage conversion efficiency of 99.4% and a power conversion efficiency up to 63.3%. The proposed rectifier can be used to increase the charging efficiency of wearable piezoelectric energy harvesters.

Downloads

Download data is not yet available.

References

  1. A. Goldberg, J. W. K. Ho, “Hactive: a smartphone application for heart rate profiling,” Biophys. Rev., vol. 12, no. 4, pp. 777-779, 2020, doi: https://doi.org/10.1007/s12551-020-00731-3.
  2. S. Ardalan, M. Hosseinifard, M. Vosough, H. Golmohammadi, “Towards smart personalized perspiration analysis: An IoT-integrated cellulose-based microfluidic wearable patch for smartphone fluorimetric multi-sensing of sweat biomarkers,” Biosens. Bioelectron., vol. 168, pp. 112450, 2020, doi: https://doi.org/10.1016/j.bios.2020.112450.
  3. S. B. Baker, W. Xiang, I. Atkinson, “Internet of Things for Smart Healthcare: Technologies, Challenges, and Opportunities,” in IEEE Access, vol. 5. Institute of Electrical and Electronics Engineers Inc., 2017, pp. 26521–26544, doi: https://doi.org/10.1109/ACCESS.2017.2775180.
  4. W. Tang, J. Ren, K. Deng, Y. Zhang, “Secure Data Aggregation of Lightweight E-Healthcare IoT Devices with Fair Incentives,” IEEE Internet Things J., vol. 6, no. 5, pp. 8714-8726, 2019, doi: https://doi.org/10.1109/JIOT.2019.2923261.
  5. A. M. Elmisery, S. Rho, M. Aborizka, “A new computing environment for collective privacy protection from constrained healthcare devices to IoT cloud services,” Cluster Comput., vol. 22, no. 1, pp. 1611-1638, 2019, doi: https://doi.org/10.1007/s10586-017-1298-1.
  6. A. S. Dahiya et al., “Energy autonomous wearable sensors for smart healthcare: A review,” Journal of The Electrochemical Society, vol. 167, no. 3, pp. 037516, 2019, doi: https://doi.org/10.1149/2.0162003jes.
  7. X. Li, E. S. Rogers, S. Nabavi, L. Zhang, “Effect of Varying Threshold Voltage on Efficiency of CMOS Rectifiers for Piezoelectric Energy Harvesting Applications,” in Canadian Conference on Electrical and Computer Engineering, 2020, vol. 2020-August, doi: https://doi.org/10.1109/CCECE47787.2020.9255679.
  8. W. L. Wu, C. Y. Yang, D. A. Wang, “A Flipping Active-Diode Rectifier for Piezoelectric-Vibration Energy-Harvesting,” in 2020 European Conference on Circuit Theory and Design (ECCTD), Sep. 2020, pp. 1-4, doi: https://doi.org/10.1109/ECCTD49232.2020.9218313.
  9. T. Oh, S. K. Islam, G. To, M. Mahfouz, “Powering wearable sensors with a low-power CMOS piezoelectric energy harvesting circuit,” in 2017 IEEE International Symposium on Medical Measurements and Applications, MeMeA 2017 - Proceedings, Jul. 2017, pp. 308-313, doi: https://doi.org/10.1109/MeMeA.2017.7985894.
  10. H. Lee, J. S. Roh, “Charging device for wearable electromagnetic energy-harvesting textiles,” Fash. Text., vol. 8, no. 5, pp. 1-10, 2021, doi: https://doi.org/10.1186/s40691-020-00233-6.
  11. A. Virattiya, B. Knobnob, M. Kumngern, “CMOS precision full-wave and half-wave rectifier,” in Proceedings - 2011 IEEE International Conference on Computer Science and Automation Engineering, CSAE 2011, vol. 4, pp. 556-559, doi: https://doi.org/10.1109/CSAE.2011.5952911.
  12. N. A. Wahab, M. K. M. Salleh, N. Othman, M. F. A. Khalid, N. M. Hidayat, “High efficiency CMOS rectifier for energy harvesting,” in IEACon 2016 - 2016 IEEE Industrial Electronics and Applications Conference, 2017, pp. 123-127, doi: https://doi.org/10.1109/IEACON.2016.8067367.
  13. H. K. Cha, W. T. Park, M. Je, “A CMOS rectifier with a cross-coupled latched comparator for wireless power transfer in biomedical applications,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 59, no. 7, pp. 409-413, 2012, doi: https://doi.org/10.1109/TCSII.2012.2198977.
  14. S. Guo, H. Lee, “An efficiency-enhanced CMOS rectifier with unbalanced-biased comparators for transcutaneous-powered high-current implants,” IEEE J. Solid-State Circuits, vol. 44, no. 6, pp. 1796-1804, 2009, doi: https://doi.org/10.1109/JSSC.2009.2020195.
  15. X. D. Do, C. J. Jeong, H. H. Nguyen, S. K. Han, S. G. Lee, “A high efficiency piezoelectric energy harvesting system,” in 2011 International SoC Design Conference, ISOCC 2011, pp. 389-392, doi: https://doi.org/10.1109/isocc.2011.6138792.
  16. G. D. Szarka, B. H. Stark, S. G. Burrow, “Review of power conditioning for kinetic energy harvesting systems,” IEEE Transactions on Power Electronics, vol. 27, no. 2. pp. 803-815, 2012, doi: https://doi.org/10.1109/TPEL.2011.2161675.
  17. M. M. Mano, M. D. Ciletti, Diseño Digital. 5th ed. Pearson Education: Ciudad de México, México, 2013.
  18. R. J. Tocci, N. S. Widmer, G. L. Moss, Sistemas Digitales Principios y Aplicaciones. 8th ed. Pearson Education: Ciudad de México, México, 2017.
  19. A. Costilla Reyes, A. Abuellil, J. J. Estrada-Lopez, S. Carreon-Bautista, E. Sanchez-Sinencio, “Reconfigurable system for electromagnetic energy harvesting with inherent activity sensing capabilities for wearable technology,” IEEE Trans. Circuits Syst. II Express Briefs, vol. 66, no. 8, pp. 1302-1306, 2019, doi: https://doi.org/10.1109/TCSII.2018.2884613.
  20. Y. Sun, I. Y. Lee, C. J. Jeong, S. K. Han, S. G. Lee, “An comparator based active rectifier for vibration energy harvesting systems,” in 13ª International Conference on Advanced Communication Technology, ICACT, 2011, pp. 1404-1408.
  21. T. Oh, S. K. Islam, M. Mahfouz, G. To, “A Low-Power CMOS Piezoelectric Transducer Based Energy Harvesting Circuit for Wearable Sensors for Medical Applications,” J. Low Power Electron. Appl., vol. 7, no. 4, pp. 33, 2017, doi: https://doi.org/10.3390/jlpea7040033.
  22. L. Huang et al., “Fiber-Based Energy Conversion Devices for Human-Body Energy Harvesting,” Adv. Mater., vol. 32, no. 5, pp. 1902034, 2020, doi: https://doi.org/10.1002/adma.201902034.
  23. J. Wang, Z. Yang, Z. Zhu, Y. Yang, “An ultra-low-voltage rectifier for PE energy harvesting applications,” J. Semicond., vol. 37, no. 2, pp. 025004, 2016, doi: https://doi.org/10.1088/1674-4926/37/2/025004.
  24. X. D. Do, H. H. Nguyen, S. K. Han, D. S. Ha, S. G. Lee, “A self-powered high-efficiency rectifier with automatic resetting of transducer capacitance in piezoelectric energy harvesting systems,” IEEE Trans. Very Large Scale Integr. Syst., vol. 23, no. 3, pp. 444-453, 2015. doi: https://doi.org/10.1109/TVLSI.2014.2312532.